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Abstract

Study of users’ behaviour, interests, and influence is of interest within the

realm of online social networks due to its wide range of applications, such

as personalized recommendations and marketing campaigns. However, the

proposed approaches are not always scalable to a large number of users and

a huge amount of user-generated content. Community-level studies are in-

troduced to facilitate scalability, among other characteristics, highlighting

the main properties of the network at a higher collective level. Prior work is

mainly focused on the identification of online communities that are formed

based on shared links and/or similar content. However, there is little litera-

ture on detecting communities that simultaneously share topical and tempo-

ral similarities. To extract diachronically like-minded user communities who

have similar temporal dispositions according to their topics of interest from

social content, we put forward two approaches: i) multivariate time series

analysis, and ii) neural embeddings. In the former approach, we model users’

temporal topics of interest through multivariate time series, and inter-user

affinities are calculated based on pairwise cross-correlation. While simple and
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effective, this approach suffers from sparsity in multivariate time series. In

the latter method, however, each user is mapped to a dense embedding space

and inter-user affinities are calculated based on pairwise cosine similarity.

While the objective of these two proposed approaches is to identify user

communities up until the present; in the last step of this thesis, we propose

two approaches to identify future communities, i.e., community prediction:

i) Granger regression, and ii) temporal latent space modeling. In Granger

regression, we propose to consider both the temporal evolution of users’ inter-

ests as well as inter-user influence through the notion of causal dependency.

In the latter method, however, we assume that each user lies in an unob-

served latent space, and similar users in the latent space are more likely to

be members of the same user community. The model allows each user to

adjust her location in the latent space as her topics of interest evolve over

time.

Empirically, we demonstrate that our proposed approaches, when evalu-

ated on a Twitter dataset, outperform existing methods under two applica-

tion scenarios, namely news recommendation and user prediction.
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Chapter 1

Introduction

Online social networks have been an effective medium for communication

and social interaction. Predicting users’ behaviour, interests, and influence

are of interest within this realm due to the wide range of applications such as

personalized recommendations and marketing campaigns. However, the pro-

posed approaches are not always scalable to large numbers of users and huge

amounts of user-generated content. Community-level studies are introduced

to help facilitate scalability, among other characteristics, highlighting the

main properties of the network at a higher collective macro level. Therein,

information sharing and communication patterns of users in social network

platforms lead to the formation of communities that consist of like-minded

or similarly behaving users.

In order to support community-level models, various community detec-

tion methods have been proposed in the literature. Topology-based commu-
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nity detection methods focus on explicit links, e.g., followership on Twitter1,

to detect like-minded users [111, 38]. However, they fall short to identify ac-

curate like-minded user communities due to two main reasons. First, many

of the explicit social connections are grounded in other factors, e.g., kinship,

that do not necessarily point to inter-user interest similarity [27]. Second,

like-minded users are not necessarily explicitly connected to each other. As

a result, content (topic)-based approaches are introduced [1, 115]. There

are also hybrid approaches that incorporate both topology and content to

identify a reliable account of like-minded communities [3, 93]. However, the

approaches proposed in [3, 1, 115, 93] do not take into account the fact that

like-minded users need to exhibit similar temporal behaviour towards similar

topics as well. Indeed, users’ interests have a dynamic nature and drift over

time in online social networks; a user may become interested in a new topic,

lose interest in a topic, or change her degree of interest towards a topic [85].

For example, Figure 1.1 shows how the degree of interest of three Twitter

users @joe2, @john and @mary, changes over the ‘War in Afghanistan’ topic

from mid November to the end of December 2010. The first two users seem

to share a similar behavioural pattern towards this topic. However, another

user @mary does not start posting about the same topic until much later

in late December of the same year. While the three users share a similar

interest, they do not exhibit this interest in similar time intervals. Contem-

1twitter.com
2These names are being used in this thesis as substitutes for the users’ real Twitter

screen names.

2

https://twitter.com


Figure 1.1: Different temporal inclination of three Twitter users with respect
to the ‘War in Afghanistan’ topic from November till end of December 2010.

porary community detection methods, such as the aforementioned methods,

would cluster all these three users in the same community because they do

not incorporate the temporal nature of users’ topics of interest. This renders

it difficult for applications such as news recommender systems to generate

recommendations that are temporally sensitive. If the three mentioned users

were identified as members of the same community, they would be recom-

mended the same news articles at the end of December on the given topic.

However, @joe and @john have already covered this topic in November and

have now moved on and as a result are not interested in it any longer but

@mary has just become interested in the topic.

The first objective of our work is to identify diachronically like-minded

user communities that have similar temporal dispositions with regards to the

topics of interest. A diachronic approach (from Greek from δια-‘through’

and χ%oνoζ ‘time’) considers the way in which users’ topics of interest has

3



developed and evolved through time. Specifically, we want to identify the

following type of communities: those communities that distinguish between

the users who are interested in a similar set of topics this month, e.g. {@joe,

@john}, from those who have the same behavioural pattern towards the same

set of topics but in a different time period, e.g., @mary; hence, supporting

temporality in topic-based community detection methods. We propose two

topical and temporal community detection methods, i) multivariate time se-

ries analysis, and ii) neural embeddings of users, that measure inter-user

similarity based on temporal topical interests. In the former approach, we

model users’ temporal topics of interest through multivariate time series and

inter-user affinities are calculated based on pairwise cross-correlation between

users’ multivariate time series. While simple and effective, this approach suf-

fers from sparsity in multivariate time series. In the latter method, however,

each user is mapped to a dense vector space (embedding space) and inter-user

affinities are calculated based on pairwise cosine similarity between users’

vectors in embedding space. Both approaches are completely independent

of the underlying topic detection method and are applicable in any textual

content sharing networks which include timestamps for the shared content,

e.g. tweets, blog posts, news articles and citation networks, just to name a

few.

The second objective of our work is to predict latent like-minded user

communities in a future yet to be observed time interval. While the objective

of the first two proposed methods is to identify user communities up until the

4



present (now), in the last step of this research we put forward two approaches,

namely Granger regression and temporal latent space modeling, to identify

future communities, i.e., community prediction. More specifically, given a

sequence of users’ contributions towards a set of topics of interest from time

interval 1 to T, the objective is to predict user communities in a future time

interval T + 1. In the Granger regression method, G-regression for short, we

propose to consider both the temporal evolution of users’ interests as well as

inter-user causal influence. We employ the Granger concept of causality to

determine the degree of inter-user influence that can be used to identify which

users play influential roles in the behavioural evolution of one or more other

users. Based on Granger causality, we identify a causing user c to influence

the affected user e if and when the past observations of c lead to a more

accurate prediction of the behaviour of e above and beyond the information

contained in past observation of e alone. Although the proposed G-regression

method has shown promising results, it requires building predictive models

on a per user basis and, hence, is computationally expensive. Alternatively,

we propose a temporal latent space model for user community prediction in

online social networks based on a history of users’ past and present topics

of interest. The model assumes that each user lies in an unobserved latent

space, and similar users in the latent space representation are more likely

to be members of the same user community. The model allows each user to

adjust her location in the latent space as her set of topics of interest evolve

over time.

5



1.1 Research Objectives

Communities provide summarization of network structure and content, high-

lighting the main properties of the network at a macro level; hence, they give

insights into the dynamics and the overall status of the network. Community

detection finds application in areas as diverse as sociology, biology, marketing

and computer science. In sociology, it helps with understanding the forma-

tion of action groups in the real world such as clubs and committees. In

biology, community detection methods are used to organize computation-

ally probed protein structure spaces [55]. In marketing, companies can use

communities to design targeted marketing, as the Edelman Trust Barometer

Report found, 44% of users react to online advertisements if other users in

their peer group have already done so. In computer science, how informa-

tion is disseminated in the network through communities has been studied

primarily because community drives like-minded people to connect and en-

courages them to share more content. Also, communities are employed to

discover previously unknown interests of users, also known as alias interest

detection, which can be potentially useful in recommender systems to set

up efficient recommendations [93]. In a very recent concrete application,

Customer Relationship Management (CRM) systems are empowered to tap

into the power of social intelligence by looking at the collective behaviour

of users within communities in order to enhance client satisfaction and ex-

perience. As an example, customers often post their opinions, suggestions,

6



criticisms or support requests through online social networks such as Twit-

ter or Facebook3. Customer service representatives would quickly identify

the mindset of the customer that has called into the call center by a series

of short questions. For such cases, appropriate techniques are required that

would look at publicly available social and local customer data to understand

their background so as to efficiently address their needs and work towards

their satisfaction. Important data such as the list of influential users within

the community, the position of a given user in relation to influential users, the

impact of users’ opinions on the community, customers’ social behavioural

patterns, and emergence of social movement patterns are of interest in order

to adapt the customer care experience for individual customers [87].

The first part of this research is motivated by the very fact that mind-

sets are temporal, i.e., people’s perceptions of things, events, and world are

constantly changing. For example, as shown in Figure 1.1, while the three

Twitter users seem to share a similar interest in the ‘War in Afghanistan’

topic, they are not aligned in time. @mary is not interested in the topic, as

she does not start posting about it, until much later in late December of the

same year. We do not consider all these three users like-minded as opposed

to the state-of-the-art community detection methods because we add a tem-

poral dimension. Our research helps applications such as news recommender

systems with recommending the right items at the right point in time. As

such, @joe and @john as a member of the same community would be recom-
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mended relevant news articles in November while @mary receives the same

articles but later in December as members of a different community.

The second part of this research, i.e., community prediction, allows us to

perform forward planning by predicting users’ topics of interest in the future

and is of high theoretical and practical significance. For instance, while

our research in the first part helps applications such as news recommender

systems with recommending the right items in the present time, community

prediction allows us to know future probable community affiliations for users

such that news recommender systems are able to recommend the right items

in the future yet to be observed time intervals. For instance, we are interested

in determining whether @mary continues to be interested in the topic ‘War

in Afghanistan’ for the next month, i.e., January, or what the probabilities

are for @joe and @john to return to this topic yet again in the future.

This thesis aims to develop methods to form communities of like-minded

users based on their temporal and topical interests in the past, present and

future. While a large body of literature has been devoted to community

detection, many challenges remain to be addressed. In the following, we

review some of the challenges and present detailed objectives of this research

in terms of research questions.

1.1.1 Research Question 1 (RQ1)

Does the consideration of temporal evolution of users’ topics of

interest lead to higher quality communities compared to when time
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is overlooked?

The overarching goal of this research is to address this research question.

We propose two alternative temporal content-based (topical) user community

detection methods which aim to latent communities whose members share

higher similarity with respect to topics of interest over time. As such, those

users who share not only similar topical interests but also share similar tem-

poral behaviour are considered to be like-minded and hence members of the

same community. In contrast, those users who are simply dissimilar in topics

of interest or share similar topical interests but in different time intervals are

not considered like-minded and need to end up in different communities.

Existing methods have often overlooked the temporal nature of users’

topics of interest. As a result, they can fall short in temporally sensitive

applications such as news recommender systems where it is imperative to

recommend relevant news articles at the right time. This needs to be ad-

dressed by our proposed methods.

1.1.2 Research Question 2 (RQ2)

Do temporal content-based methods lead to higher quality com-

munities compared to link-based methods?

Instead of inter-user connections (links) in the social network structure,

we propose to take users’ content similarity into account in our methods for

two main reasons: i) there are many users on a social network that have

similar interests but are not explicitly connected to each other; and, ii) an

9



explicit social connection does not necessarily indicate user interest similarity

but could be owing to sociological processes such as conformity, aspiration,

and sociability or other factors such as friendship and kinship that do not

necessarily point to inter-user interest similarity. There are also some special

cases where link-based methods are not applicable like when the network is

not available or misleading, e.g., when links are fraudulent because of link-

farmers (social capitalists).

The noisy and sparse link information misleads the process of community

detection for existing methods which rely only on links and result in a poor

set of user communities.

1.1.3 Research Question 3 (RQ3)

Do temporal content-based and link-based methods have synergis-

tic impact on each other and reinforce the quality of the identified

communities when applied in tandem?

Earlier non-temporal user community detection methods have already

shown improvement when incorporating social network structure (links) with

topics of interest (content) compared to those in which links and content

are used separately [115, 93]. However, to the best of our knowledge, all

existing temporal user community detection methods are only content-based

and little has been studied on the effect of social network structure and

temporal evolution of user content simultaneously.

In order to address this research question, we simultaneously consider
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users’ temporal content and their social network structure when identifying

user communities, and we embed both users’ temporal interests and their

social network structure into a dense vector representation using neural em-

bedding mechanisms. The user embeddings derived from two different in-

formation sources (modalities), i.e., i) temporal content-based embeddings

based on users’ topics of interest over time, and ii) network embeddings

based on social network neighborhoods, are then linearly interpolated to

build a single final multimodal user embedding. The linear interpolation of

two user embeddings at the embeddings level allows us to investigate how and

to what extent users’ dynamic topics of interest and/or users’ social network

structure contribute to the quality of the inferred user communities.

1.1.4 Research Question 4 (RQ4)

Is it possible to predict future-yet-unobserved content-based com-

munities on social networks?

Our research is among the first to explore the idea of predicting future-

yet-unobserved content-based (topical) communities on social networks. We

propose a method that learns to represent users within a latent space that

preserves users’ similarities over time for the task of community prediction.

Contrary to the proposed methods to address research questions RQ1 to

RQ3, which use users’ temporal and topical interests for pairwise similar-

ity to identify user communities up until the present (now), the proposed

temporal latent space modeling uses such information for predicting user
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communities in the future.

There are temporal link prediction methods which assume that the so-

cial network structure is dynamic and changing with time. While suitable

for identifying future links between users in a social network structure, such

methods inherently fall short when the communities need to take users’ con-

tent similarity into account, i.e., identifying content-based user communities

in the future due to the same reason as in RQ2, i.e., noisy and sparse link

information.

1.2 Contributions

The concrete contributions of this research are:

1. We have modeled the contribution of each user towards topics using

multivariate time series and exploit two-dimensional cross-correlation

on such time series on a pairwise basis to find similar users in topics

of interest and temporal behaviour. We employed Louvain cluster-

ing [15], a graph-based heuristic modularity-based partitioning algo-

rithm, to create final user communities. To find topics from the text

stream of the social network, we used state-of-the-art topic detection

methods in order to show that our approach and its contributions are

independent of topic detection algorithms and perform well on a va-

riety of topic detection methods. We used one graph-based [104] and

two probabilistic LDA [14] and ToT [101] methods. According to the
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results obtained from a Twitter dataset covering a two-month period,

our temporal topic-based community detection method is able to ef-

fectively identify user communities that are formed around temporally

similar behaviour towards shared topics when compared to the non-

temporal approaches. This contribution is to address RQ1 and RQ2.

In Chapter 3, Multivariate User Time Series, we provide the details.

2. We have proposed a neural embedding approach to identify temporally

like-minded user communities. We modeled the users’ temporal contri-

bution towards topics of interest by introducing the notion of regions

of like-mindedness between users. These regions cover users who share

not only similar topical interests but also similar temporal behaviour.

By considering the identified set of regions of like-mindedness as a con-

text, we train a neural network such that the probability of a user in

a region is maximized given other users in the same region. The final

weights of the neural networks form the low-dimensional vector rep-

resentation of each user that incorporates both topics of interest and

their temporal nature. Finally, we applied the Louvain [15] clustering

technique to identify like-minded user communities on a weighted user

graph in which the similarity of two users is based on the cosine sim-

ilarity of their respective vectors. We demonstrated the effectiveness

of the user embedding approach on a Twitter dataset in the context

of news recommendation and user prediction applications compared to

our previous approach and the state of the art. This contribution is to
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address RQ1 and RQ2. In Chapter 4, Neural User Embeddings, we

explain the details.

3. We have systematically interpolated temporal content-based embed-

dings and social link-based embeddings to capture both social network

connections and temporal content evolution for representing users. We

employ neural graph embedding techniques to embed information from

users’ social network structure into user representations. We build a

single set of multimodal embeddings from embeddings of temporal so-

cial content and social network structure through their linear interpo-

lation in order to elucidate the contribution of users’ temporal content

on the one hand, and social network structure, on the other hand,

for finding user communities. Having learnt two different user vector

representations of users from the temporal social content and social

network structure, denoted by WD and WG, respectively, we adopt a

linear weighting mechanism to interpolate the embeddings into a single

vector representation W , i.e., W = αWD + (1 − α)WG where α de-

notes a weighting coefficient to interpolate between temporal content

and social network structure in the final user vector representation. For

instance, if α = 0, the interpolated embeddings lead to the conventional

link-based user community detection on the one extreme. On the other

extreme, it will solely rely on temporal content if α = 1 and becomes

a pure temporal content-based method. The effect of embedding in-

terpolation to the overall performance of user community detection is
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evaluated by choosing α ∈ [0, 1]. Although simple, linear weighting is

uninformed, easy to implement, interpretable, and could achieve com-

petitive performance across a wide span of different data types and

domains. We demonstrated the synergistic impact of content-based

and link-based user embeddings on a Twitter dataset in the context of

news recommendation and user prediction applications. This contribu-

tion is to address RQ3. In Chapter 4, Neural User Embeddings, we

explain the details.

4. We have proposed to incorporate the temporal evolution of users’ con-

tents as well as a stricter form of inter-user influence through causal

dependency for user community prediction in online social networks.

We use the Granger concept of causality [42] to determine the degree

of inter-user influence that can be used to identify which users play in-

fluential roles in the behavioural evolution of one or more other users.

Based on Granger causality, we identify a causing user c to influence

the affected user e if and when the past observations of c lead to a more

accurate prediction of the behaviour of e as opposed to when only the

information contained in past observations of e is only used. This leads

to an influence network in which the edges depict the influence ampli-

tude and direction of its adjacent users. We use the influence network

to perform interest prediction. Specifically, given a topic of interest z

and a user e, we find e’s influential neighbor(s) from the influence net-

work such as c and build a vector autoregression model (VAR) based
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on e and c’s user-topic contribution time series to predict e’s degree

of interest toward topic z in the future. Last, a weighted undirected

graph is formed over the users and their pairwise similarity on pre-

dicted degrees of interest in the future on which the Louvain method is

applied to find user communities in the future. This contribution is to

address RQ4. In Chapter 5, User Community Prediction, we explain

the details.

5. We have proposed a temporal latent space model for user community

prediction in online social networks. Given a set of topics Z extracted

by a topic detection method (e.g., LDA) within T time intervals and

a set of users U we built temporal graphs Gt = (U,Et, s) for each time

interval 1 ≤ t ≤ T whose nodes are users in U and Et is the set of

weighted undirected edges whose weights are based on the similarity

function s which is defined as the cosine similarity of topic preference

vector for the users at time interval t. A topic preference vector for

user u ∈ U towards topic set Z at time interval t : 1 ≤ t ≤ T is a

vector that indicates the preference by user u for each topic z ∈ Z at

time interval t. The stream of graphs [G1..Gt..GT] within time period

T could be considered as a dynamic graph G which is evolving over

time. We map each node (user) u at Gt to a low-rank d-dimensional

latent space, while imposing the following assumptions: i) users change

their latent representations over time, ii) two users that are close to

each other in G remain close in the latent space, iii) two users who are
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close in latent space share similar topics of interest with one another

more than two distant users. We use the local block coordinate gradient

descent (bc-gd) algorithm, proposed by Zhu et al. [120], to predict GT+1

whose set of induced subgraphs form content-based user communities

at time interval T+1. The proposed method can also be generalized to

make predictions for any time period after T. This contribution is to

address RQ4. In Chapter 5, User Community Prediction, we explain

the details.

6. In the absence of gold standard user communities, we have proposed

two application scenarios: news recommendation and user prediction,

to quantitatively examine our proposed approaches. In these evaluation

strategies, a temporal like-minded user community detection method

is considered better iff its output communities improve an underly-

ing application. To this end, a Twitter dataset, including ˜3M tweets

posted during Nov. and Dec. 2010 have been collected. We build a gold

standard dataset for the said applications by collecting news articles

to which a user has explicitly linked in her tweets (or retweets). We

postulate that users post news articles’ URLs since they are interested

in the topics of the news article. We build the gold standard from a set

of news articles whose URLs have been posted by user u at time t. We

see each entry as a triple (u, a, t) consisting of the news article a, user

u, and the time t. As a result, G = {(u, a, t) : u ∈ U, a ∈ A, 1 ≤ t ≤ T}

forms our gold standard where U and A are sets of users and news
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articles. Through output user communities, we predict the right news

article(s) for the user u at time t, i.e., (u, ?, t), in the news recommenda-

tion task. In the user prediction task, however, we predict the poster(s)

of a news article a at time t, i.e., (?, a, t). In Chapter 6, Evaluation, we

provide further details.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 - Background and Related Work. This chapter covers

preliminary concepts and definitions in the domain of user community detec-

tion, neural embeddings, and community prediction. Furthermore, a review

of the most related research works which are related to the contributions of

this thesis is provided. Specifically, the existing work in this area is surveyed

based on a taxonomy of different information sources (modalities), i.e., links,

content, and time, for the task of user community detection and prediction.

Chapter 3 - Multivariate User Time Series. The focus of this

chapter is to develop a multivariate time series representation of users to

model the contributions of each user towards the identified topics over time,

which allows us to detect temporal content-based user communities.

Chapter 4 - Neural User Embeddings. In this chapter, we propose

our temporal content-based neural embedding method, which learns low-

dimensional user representations such that users who exhibit similar temporal
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behaviour toward similar topics of interest are closer to each other in the

embedding space.

Chapter 5 - User Community Prediction. This chapter goes through

the task of community prediction in the future and describes our proposed

methods, namely Granger regression and a temporal latent space model, to

address content-based (topical) community prediction.

Chapter 6 - Evaluation. This chapter reports on our testbed in terms

of the evaluation methodology, datasets, gold standard, and experiments.

Chapter 7 - Conclusion and Future Work. This chapter concludes

this thesis with potential directions of improvement based on the limitations

of this research.

1.4 Related Publications

• Hossein Fani. “Temporal Formation and Evolution of Online Com-

munities.” Proceedings of the Ninth ACM International Conference

on Web Search and Data Mining, San Francisco, CA, USA, February

22-25, 2016.
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Chapter 2

Background and Related Work

This chapter provides a concise overview of the definitions, the underlying

concepts, history and state of the art in user community detection and pre-

diction.

2.1 Online Social Network

A social network is a net structure made up of social actors, mainly hu-

man individuals, and ties between them. Online social networks (OSN) are

online platforms that allow social actors, i.e., users, in spatially dispersed

locations to build social relations. Online social networks facilitate differ-

ent modes of communication and present diverse types of social interactions.

They not only allow individual users to be connected and share content, but

also provide the means for active engagement, which enables users to play

20



social roles that they regularly undertake in real social settings. Such fea-

tures have made OSNs a fundamental part of the global online experience,

having pulled ahead of email [11]. Given individuals mimic their real world

ties and acquaintances in their online social preferences [67], the tremendous

amount of information offered by OSNs can be mined through social network

analysis (SNA) to help sociometrists, sociologists, and decision makers from

many application areas with the identification of actionable insight [22, 23].

For instance, despite the heterogeneity of user bases, and the variety of in-

teractions, most of these networks exhibit common properties, including the

small-world and scale-free properties [102, 9]. In addition, some users in

the networks are better connected to each other than to the rest. In other

words, individuals tend to associate with others who share similar interests

in order to communicate news, opinions or other information of interest, as

opposed to establishing sporadic connections, a tendency termed homophily

as a result of which communities emerge on social networks [68].

2.2 User Community

The word community refers to a social context. People naturally tend to

form groups, within their work environment, family, or friends. A community

is a group of users who share similar interests, consume similar content or

interact with each other more than other users in the network. Communities

are either explicit or latent. Explicit communities are known in advance
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and users deliberately participate in managing explicit communities, i.e.,

users create, destroy, subscribe to, and unsubscribe from them. For instance,

Google’s social network platform, Google+1, had Circles that allowed users to

put different people in specific groups. In contrast, in this work, communities

are meant to be latent. Members of latent communities do not tend to show

explicit membership and their similarity of interest lies within their social

interactions.

No universally accepted quantitative definition of the community has

been formulated yet in the literature. The notion of similarity based on

which users are grouped into communities has been addressed differently

in social network analysis. In fact, similarity often depends on the specific

system at hand or application one has in mind, no matter whether they

are explicit connections. The similarity between pairs of users may be with

respect to some reference property, based on part of the social network or the

whole. Nonetheless, a required property of a community is cohesiveness. The

more users gather into groups such that they are intra-group close (internal

cohesion) and inter-group loose (external incoherence), the more the group

would be considered as a community. Moreover, in partitioned communities,

each user is a member of one and only one community. However, in real

networks users may belong to more than one community. In this case, one

speaks of overlapping communities where each user, being associated with a

mixture, contributes partially to several or all communities in the network.

1Google+ is no longer available since April 2019.
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2.2.1 History

Probably the earliest account of research on community detection dates back

to 1927. At the time, Stuart Rice studied the voting themes of people in

small legislative bodies (less than 30 individuals). He looked for blocs based

on the degree of agreement in casting votes within members of a group,

called Index of Cohesion, and between any two distinct groups, named Index

of Likeness [86]. Later, in 1941, Davis et al. [25] performed a social anthropo-

logical study on the social activities of a small city and surrounding county

of Mississippi over 18 months. They introduced the concept of caste to the

earlier studies of community stratification by social class. They showed that

there is a system of colored caste which parsed a community through rigid

social ranks. The general approach was to partition the nodes of a network

into discrete subgroup positions (communities) according to some equiva-

lence definition. Meantime, George Homans showed that social groups could

be detected by reordering the rows and the columns of the matrix describ-

ing social ties until they form a block-diagonal shape [48]. This procedure

is now standard and mainly addressed as blockmodel analysis in social net-

work analysis. Further analysis of community structure was carried out by

Weiss and Jacobson in 1955 [103] who searched for work groups within bu-

reaucratic organizations based on attitude and patterns of interactions. The

authors collected the matrix of working relationships between members of an

agency by means of private interviews. Each worker had been asked to list

her workers along with frequency, reason, subject, and the importance of her
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contacts with them. In addition to reordering a matrix’s rows and columns,

work groups were separated by removing the persons working with people

of different groups, i.e., liaison person. The concept of liaison has been re-

ferred to as betweenness and is at the root of several modern algorithms for

community detection.

2.3 Prior Work

In this thesis, we will focus on identifying and modeling the latent like-minded

user communities detected in a given time period on online social networks.

As a result, the main research area that is closely related to our proposal is

community detection which we review in this section.

Existing community detection approaches can be broadly classified into

two categories [38]; link -based and content-based approaches. Link-based

approaches, also known as topology-based, see a social network as a paradig-

matic example of a graph, whose nodes are users and edges indicate explicit

user relationships. On the other hand, content-based approaches, also known

as topic-based, mainly focus on the information content of the users in the

social network to detect communities. The goal of content-based approaches

is to detect communities formed around the topics extracted from users’

information content. Hybrid approaches incorporate both topological and

topical information to find more meaningful communities with higher qual-

ity. Recently, researchers have performed longitudinal studies on the task of
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community detection in which the social network is monitored in time inter-

vals over a period of time [50, 51, 64]. The Time dimension results in a new

temporal form of community detection which is the main motivation of this

thesis. The following section includes the details of seminal works in each

category.

Herein, we use the terms ‘graph’ and ‘network’ interchangeably as well

as the terms ‘vertex’, ‘node’, and ‘user’.

2.3.1 Link Analysis

Link-based user community detection methods are primarily based on the

homophily principle [68] where links between users are considered important

clues for interest similarity and, as a result, densely connected groups of users

imply a user community. In this line of work, the social network is modeled

as a graph with nodes representing users and edges representing relation-

ships or interactions. The primary principle considered in this line of work

is connectedness, which means that connections within each community are

dense and connections among different communities are relatively sparse. To

this end, primitive graph structures such as components, cliques, k-plexes

or other pseudo-clique structures are considered to represent user communi-

ties [24, 38, 60]. There are also graph partitioning (clustering) approaches

which try to minimize the number of links between user communities so

that the users inside one community have more intra-connections than inter-

connections with other communities. Such approaches are based on iterative
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bisection: continuously dividing one group into two groups, while the number

of communities which should be in a network is unknown. The GirvanNew-

man approach [41] is one of the most commonly used methods in link-based

user community detection. It partitions the graph by gradually removing

links with high betweenness centrality in a descending order. Betweenness

centrality for a link is defined as the number of the shortest paths between

any pairs of nodes that go through the link in a graph or network. A link

with a high betweenness centrality score represents a bridge-like connector

between two parts of a network such that the communication between many

pairs of nodes through the shortest paths between them is affected by its

removal.

Other graph partitioning approaches include modularity maximization [15,

77], stochastic models [83, 47, 54], spectral methods [78], max-flow min-cut

theory [61], and conductance cut minimization [28], among which the first

two categories are widely adopted and thus worth more investigation.

Modularity maximization was first introduced by Newman [77]. The

modularity function is defined as the difference between the number of links

within user communities and the expected number of such links over all

pairs of users. Modularity of a user community is a scalar value between -1

and 1. It is positive if the number of edges within the community exceeds

the expected number on a random basis. Intuitively, modularity reflects the

concentration of edges within modules (communities) compared with random

distribution of links between all nodes regardless of modules. The simplest
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formulation for a social network structure with two user communities would

be the following:

Q =
1

4m

∑
uv

(auv −
kukv
2m

)(hihj) (2.1)

where auv is the number of edges between users u and v, which will normally

be 0 or 1, hi equals to 1 (or -1) if user u belongs to the first (or second)

community, kukv
2m

is the expected number of links between users u and v if

edges are placed randomly, ku is the degree of user u and m = 1
2

∑
u ku is the

total number of links in the network. Maximizing modularity for all commu-

nities has been proven to be NP-hard [16] for which optimization algorithms

using greedy algorithms, spectral methods, simulated annealing, sampling

techniques, and mathematical programming have been proposed [20]. For a

review on different formulations of modularity, in-depth analysis of its cor-

responding maximization methods, and its problem, namely the resolution

limit problem, see [20].

In stochastic models [83, 47, 54], user communities are considered as

latent variables and the links between users are derived by a generative pro-

cess where the probability of a connection (link) for a pair of users u and

v is based on the probabilities that u and v belong to the same communi-

ties. Formally, Puv =
∑K

k=1 PukPvk where K is the number of communities,

Puv is the probability that there is a link between users u and v, and Puk

and Pvk are probabilities that u and v belong to community k. The user

community detection problem can be reformulated as non-negative matrix
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factorization, i.e., A ∼ HHᵀ where H represents the latent variables which

show users’ membership in communities and A is the adjacency matrix for

the social network structure which is reconstructed (generated) by H. Square

of the Frobenius norm and Kullback-Leibleer divergence (KLdivergence) are

two alternatives to calculate the reconstruction error at each optimization

iteration in order to estimate the user communities, i.e., H.

Neural networks, particularly those with deep structures, have been suc-

cessfully applied to link-based community detection. Yang et al. [111] have

proposed to employ auto-encoders to approximate modularity. Specifically,

by defining the modularity matrix B = [buv] whose elements are (auv− kukv
2m

),

Eq. (2.1) is re-written as Q = 1
4m

hᵀBh where h is a community membership

indicator matrix. The modularity matrix is then input to an auto-encoder

to learn a new representation that can best approximate the original data.

Neural networks bring a nonlinearity advantage compared to linear approxi-

mation methods like non-negative matrix factorization (NMF) and eigenvalue

decomposition (EVD) into modularity maximization, especially because real-

world networks have nonlinear properties, e.g., links between users. In this

line of work, graph representation learning methods have also been proposed

where a data-driven approach is employed to automatically encode graph

(social network structure) elements, i.e., nodes (users), edges (links), or even

the entire graph, into a dense low-dimensional vector space followed by a

clustering method. Node2vec [43] and DeepWalk [80] employ a second or-

der random walk to sample network neighborhoods in a graph and output
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vector representations (embeddings) that maximize the likelihood of preserv-

ing topological structure of each node neighborhood in the graph. This is

in contrast to previous work which uses hand-engineered statistics like node

degrees to extract a network’s structural information. This not only saves

time and effort in the feature engineering process, but also is agnostic to

the downstream task. The embeddings can be easily fed into tasks such as

user classification and link prediction. In user community detection, graph

representation learning offers an unsupervised way to encode homophily into

a vector of real values. More sophisticated methods based on deep autoen-

coders such as deep neural graph representations (DNGR) [39, 18] and struc-

tural deep network embeddings (SDNE) [33, 99] have been also proposed to

generate graph embeddings.

Not all link-based methods perform well on large real-world networks that

have many complex structural features such as sparsity, heavy tailed degree

distributions and small diameters, among others. For empirical comparison

of these algorithms in practice, see [100, 62].

Nonetheless, link-based methods inherently fall short when the commu-

nities of interest need to take users’ content similarity into account. This

is mainly due to two reasons: i) there are many users on a social network

that have similar interests but are not explicitly connected to each other;

and, ii) explicit social connections do not necessarily indicate user interest

similarity but could be owing to sociological processes such as conformity,

aspiration, and sociability or other factors such as friendship and kinship
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that do not necessarily point to inter-user interest similarity [96, 30]. There

are also some special cases where link-based methods are not applicable like

when the network is not available [10] or misleading, e.g., when links are

fraudulent because of link-farmers (social capitalists) [59].

2.3.2 Content Analysis

With the development of social media, a significant amount of user-generated

content, known as social content, is available within user networks. Users

communicate and interact with each other in social network websites. Be-

sides the links between users, huge amounts of textual content are generated

as well. Along with rich information in social network structure, user graphs

can be extended with textual information on nodes. In social networking

sites, users maintain profile pages, write comments and share articles. In

photo and video sharing sites, users use short texts to tag photos and videos.

In microblogging websites, users post their status updates. Therefore, re-

searchers have explored the possibility of utilizing the topical similarity of

social content. They have been proposing topic-based community detection

methods, irrespective of the social network structure, to build like-minded

communities of users [10, 63, 76, 1, 115, 93].

Most of these content-based methods have been inspired by latent Dirich-

let allocation (LDA) [14] in one way or another and focused on probabilistic

generative models based on textual content [119, 93]. For example, Zhou

et al. [119] have modeled communities based on topics of interest through
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a community-user-topic generative process to identify user communities. In

their work, communities follow multinomial distribution over topics with

Dirichlet priors where each user is posting about her topics of interest based

on the conditional probability of a topic given each community. Abdelbary et

al. [1] have identified users’ topics of interest and extracted latent communi-

ties based on the topics utilizing Gaussian Restricted Boltzmann Machines.

Yin et al. [115] have integrated community detection with topic modeling

in a unified generative model to detect communities of users who are coher-

ent in both structural relationships and latent topics. In their framework, a

community can be formed around multiple topics and a topic can be shared

between multiple communities. Sachan et al. [93] have proposed probabilis-

tic schemes that incorporate users’ posts, social connections and interaction

types to discover latent user communities in social networks. They have con-

sidered three types of interactions: a conventional tweet, a reply tweet and a

re-tweet. Author-Topic-Community model [63], Author-Topic model [88] and

Community-User-Topic model [119] are other variations of latent Dirichlet

allocation (LDA), which are also proposed to identify user communities.

Another class of work attempts to transform the content-based commu-

nity detection problem into a graph clustering problem [79, 52, 65] where a

user distance matrix is computed according to the similarity of their topi-

cal interests. The distance matrix is then used to identify clusters of users.

The work by Peng et al. [79] is an instance of such techniques that focuses

on identifying user communities on SINA Weibo by hierarchically clustering

31



users based on their relation to the predefined categories available on this so-

cial networking platform. Liu et al. [65] have proposed a clustering algorithm

based on topic-distance between users to detect topic-based communities in

a social tagging network. In this work, LDA is used to extract hidden topics

in tags. Huang et al. [52] have built a pairwise similarity matrix for users

based on the shortest path on the users’ retweet graph. A spectral clustering

algorithm has been used to find user communities in order to identify influ-

ential users and topical changes in the face of natural disasters. Barbieri et

al. [10], however, proposed a network-oblivious probabilistic framework based

on stochastic diffusion processes to identify like-minded users. They argue

that users adopt topics of interest based on underlying diffusion processes

over an unobserved social graph where the diffusion process itself is based on

community-level influence.

2.3.3 Using Link and Content Information Jointly

Neither link nor content information alone is satisfactory for accurately de-

termining communities; link information is usually sparse and noisy and

often results in a poor partition of networks, and the irrelevant content could

significantly mislead the process of community detection [3, 113]. It is there-

fore important to combine link analysis and content analysis for community

detection in social networks. Several lines of work have been proposed to

combine link and content information for community detection.

In one line of work, the approaches adopt a generative framework where a
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generative link model and a generative content model are combined through a

set of shared hidden variables of community memberships [115, 93, 75, 31, 44].

For instance, the work by Yin et al. [115] introduces a generative model which

recursively defines a community through an integrated relationship between

users’ social relation and social topics. Simply put, in this model, commu-

nities are formed around multiple correlated topics where each topic can be

reused in several communities. Similarly, Sachan et al. [93] also propose

generative models for community detection but differently from the work by

Yin et al., they consider three types of information, namely topics, social

connections and interaction types such as retweeting and replying. In both

approaches, a user can be a member of different communities but with vary-

ing degrees of membership. Erosheva et al. [35] combine LDA with LDA-Link

for network analysis, referred to as the LDA-Link-Word model in this paper.

Nallapti et al. [75] combine the mixed membership stochastic block model

with LDA, and extend the LDA-Link-Word model by separating the citing

documents and cited documents with the LDA-Link-Word model on the cit-

ing documents and PLSA model on the cited documents. Other approaches

that exploit LDA for combining link and content analysis include [31, 44].

One major problem with these approaches is that they apply a generative

model for content analysis, which makes them vulnerable to irrelevant key-

words. Differently from generative models, Yang et al. [113] have proposed a

non-generative probabilistic model to find user communities in citation net-

works. They estimate the conditional probability that a user is cited given her
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popularity and her membership to a community according to her weighted

content vector (topics of interest) so that modeling the absent links, as in

generative models, is avoided.

In addition to probabilistic models, some other approaches that have

been proposed to combine link and content information include matrix fac-

torization [17, 121] and kernel fusion [71] and graph union [92] for spectral

clustering.

Graph representation learning methods, which have been recognized as

effective in link-based user community detection, have also been extended to

incorporate the rich information associated with nodes (users) in addition to

links. For instance, in order to take content into account, Yang et al. have

extended DeepWalk (TADW) [109] under the framework of matrix factoriza-

tion. Liu et al. [66] have employed a bi-directional long short-term memory

(LSTM) encoder to fuse the content and links by random walks on the social

network. Use of LSTM is motivated since it is able to capture long-range

structural information by memories of LSTM. This is in contrast to Deep-

Walk or node2vec’s where limited neighborhood scope has been considered

by first and/or the second order random walks.

2.3.4 Temporal Analysis

All the above methods do not incorporate i) temporal aspects of users’ top-

ics of interests, and/or ii) dynamics of social links and undermine the fact

that users of communities would ideally show similar contribution or interest
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patterns for similar topics and/or similar network neighborhood evolution

throughout time. As a matter of fact, many content based and link based

methods assume that the structure of the network and the topics discussed

by the users remain stable over time, which can be a limiting assumption in

practice. While a myriad of work has addressed the dynamics of social links

in user community detection, i.e., dynamic community detection [89, 107],

there have been a few works that have considered temporal aspects of users’

topics of interests as an explicit dimension when identifying user communities

in social networks [50, 51, 64].

The work by Hu et al. [50] is among the pioneers to consider temporality

in user-generated contents through a generative process, which models how

users and topics are related to each other and co-evolve over time. Their

model, namely Group Specific Topic over Time (GrosToT), learns a specific

time-aware probability distribution known as the community-topic-time dis-

tribution addressing how communities and topics are associated with each

other over time. Assuming the number of topics K and the number of com-

munities C are known in advance, the model associates Dirichlet distributions

for topics over words, communities over users, and topics over communities

with different parameters, respectively. Also, a Dirichlet distribution for

time is assigned given topic-community pairs. A user is a member of a com-

munity according to the assigned community-user distribution. Her tweet

is generated based on multinomial distribution over, first, topic-community

distribution to select topics and then topic-word distribution to select words.
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The timestamp of tweet is obtained by the multinomial distribution of time-

topic-community distribution. As seen, the model is based on the idea that

there is a tight interrelation between communities and topics. This prevents

integration of other topic detection methods for the task of community de-

tection.

Similarly, Liang et al. [64] have proposed a content-based dynamic user

community detection based on dynamic multinomial Dirichlet distribution.

The model tracks changes of each user’s time-varying topic distributions

based both on the short texts the user posts during a given time period

and on previously estimated distributions. The model can be used in two

modes: i) as a short-term dependency model that infers a user’s current

topic distribution based on the user’s topic distributions during the previous

time period only, and ii) as a long-term dependency model that infers a

user’s current topic distribution based on the user’s topic distribution during

multiple time periods in the past.

In this thesis, we follow the same underlying hypothesis related to top-

ics and temporality as by Hu et al. and Liang et al., i.e., the evolution of

user-generated content is dynamic over time (temporal) and users’ interests

can evolve over different time intervals. In contrast to dynamic community

detection methods, however, we assume that the social network structure is

static and remains stable over time. The main reason for this assumption

is that the social network structure has a significantly lower pace of change

compared to how fast content is generated over time and distributed across

36



the online social network [74]. In Chapter 3, we model users based on a

multivariate time series representation where each of the time series depict

to what extent the user has contributed to social topics in consecutive time

intervals. This time series representation allows one to compute a user simi-

larity matrix for the users based on the cross-correlation similarity of users’

time series, which can then be effectively used to extract clusters of users.

None of the proposed neural embeddings take the time dimension into

consideration for the task of user community detection either. Although Ben-

ton et al. [12] offer the opportunity to integrate different information types,

it is not clear how to integrate temporality, which can be considered to be an

aspect, rather than new information type. In Chapter 4, we propose a neural

embedding approach to model the users’ temporal contribution towards top-

ics of interest by introducing the notion of similarity regions between users.

These regions cover users who share not only similar topical interests but

also similar temporal behaviour. By considering the identified set of regions

as a context, we train a neural network such that the probability of a user

in a region is to be maximized given other users in the same region.

Another line of work has employed temporal aspects of users’ topics of

interests and/or dynamics of social links in order to determine how the user

communities of a social network will look like in a future yet-to-be-observed

time interval, i.e., community prediction. Although considerable research

has been devoted to link-based user community prediction [120, 34], rather

less attention has been paid on content-based or topical future community
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prediction. Appel et al. [5] have employed shared matrix factorization in

order to factor links, content, and temporal dimension simultaneously. This

approach embeds links and content into a shared latent space at each time

interval while taking the temporal continuity into account by using the em-

bedding as a surrogate. The temporal sequence of embeddings is then can be

utilized by autoregressive models in order to predict future user communi-

ties. Regression techniques such as autoregressive integrated moving average

(arima) and support vector regression (svr) that leverage temporal informa-

tion to predict users’ future interests have shown promising results and can

be employed to identify user communities in the future based on pairwise

content similarity among users [6]. However, they require building predictive

models per user and, hence, are computationally expensive.

In Chapter 5, we propose temporal latent space modeling for content-

based user networks in order to predict user communities in the future.

First, in contrast to link-based community prediction methods like Zhu et

al.’s method [120] and the likes that focus on social network structure, our

approach employs social content. Second, although we use temporal informa-

tion to predict future users’ topical interests similar to regression methods,

we train only one model for all users and, thus, significantly reduce compu-

tational cost. Third, contrary to Hu et al. [50] who use users’ temporal and

topical interests for pairwise similarity to identify user communities up until

this month, our task uses such information for predicting user communities

in the future which is a step forward compared to the state of the art.
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2.4 Summary

In this chapter, we have reviewed concepts in the area of user community

detection and prediction. We introduced the definition of user community as

well as a short history of user community detection. Further, we reviewed the

different community detection methods in social networks. The literature on

user community detection is broad and an exhaustive survey of community

detection algorithms is beyond the scope of this thesis. However, we provided

a systematic view of the closely related methods to this thesis and highlighted

the distinguishing aspects of this thesis compared to the state of the art.

2.5 Related Publications

• Hossein Fani, and Ebrahim Bagheri. “Community detection in social

networks.” Encyclopedia with Semantic Computing and Robotic Intel-

ligence 1.01 (2017): 1630001.
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Chapter 3

Multivariate User Time Series

User communities in social networks are often identified by considering ex-

plicit social connections between users. While such communities can reveal

important information about their members such as family or friendship ties

and geographical proximity, just to name a few, they do not necessarily

succeed at pulling like-minded users that share the same interests together.

Therefore, researchers have explored the topical similarity of social content

to build like-minded communities of users. In this chapter, following topic-

based approaches, we are interested in identifying communities of users that

share similar topical interests with similar temporal behaviour. More specifi-

cally, we tackle the problem of identifying temporal (diachronic) topic-based

communities, i.e., communities of users who have a similar temporal inclina-

tion towards emerging topics. To do so, we utilize multivariate time series

analysis to model the temporal inclination of each user towards emerging
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topics.

We capture the users’ overall mindset based on the textual content they

engage with in online social networks, e.g. tweets on Twitter, using topic

modeling approaches. This is motivated by topic modeling approaches which

are unsupervised methods for identifying topics from text corpora. Further,

our approach is agnostic to the topic detection method. We extract topics

of interest by employing seminal topic detection methods, one graph-based

and two LDA-based methods.

Each user’s topics of interest at each time interval, e.g., day, are based on

the degree of her contribution toward each identified topic. A multivariate

time series for each individual represents her topics of interest in different

time intervals. The inter-user similarity in this proposed representation is

then measured by cross-correlation, which has been already explored within

the signal processing community for measuring the similarity of a pair of time

series. Last, based on the pairwise user similarities, a weighted undirected

graph is built, on which the Louvain method, a heuristic graph partitioning

algorithm based on modularity optimization, yields our final user communi-

ties.

The concrete contributions of our work in this chapter are as follows:

1. We formally represent a user within a temporal-topic space through the

use of multivariate time series. The proposed user representation ef-

fectively incorporates users’ contributions towards the topics over time

and is able to seamlessly integrate any topic detection methods and is,

41



therefore, agnostic to the underlying topic detection method.

2. We show how time series analysis techniques can be used to measure

the similarity of pairs of users. This notion of similarity is further used

to build a graph of user relations, not based on the users’ social inter-

actions, but rather based on their disposition towards similar topics in

similar time intervals.

3. We propose a graph representation of user interactions composed from

their temporal and topical similarity and demonstrate how graph clus-

tering can be used to identify user communities that consider both

temporality and topical similarity when grouping users.

The proposed method in this chapter addresses research questions RQ1,

i.e., whether the consideration of time plays a role in the quality of the

identified communities and RQ2, i.e., whether temporal content-based user

community detection methods show better performance compared to link-

based methods.

3.1 Problem Statement

In our work, we aim at identifying latent temporal communities of users

within a specific time period T, based on the temporal inclination of the

users towards topics. We incorporate temporal aspects of users’ interests

and consider the fact that users of like-minded communities would ideally
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show similar contribution or interest patterns for similar topics throughout

time.

Problem Definition. Given a set of users U, we aim to partition U

into non-overlapping subsets in which each u ∈ U is only a member of one

subset. More formally, P = {C : C ⊆ U, |C| > 1} such that ∀Ci,Cj 6=i ∈ P :

Ci ∩ Cj = ∅. The objective of our work is to identify a configuration for P

such that members of each Ci in P show highly similar temporal disposition

with regards to active topics on the social network and high dissimilarity

with members of any other Cj 6=i ∈ P.

We divide this problem into two subproblems: topic detection and com-

munity detection in which the output of the first subproblem becomes the

input of the second one. We concretely formulate these subproblems and

propose our approach in the following.

3.2 Topic Detection

Our proposed community detection method is able to seamlessly integrate

any topic detection methods and is, therefore, agnostic to the underlying

topic detection method. Hence, the focus of our work in this subproblem

is not to propose a new topic detection method but rather to provide a

common interface to the existing topic detection techniques for the purpose of

temporal topic-based community detection. We highlight this by customizing

one graph-based and two probabilistic LDA-based approaches in our work,
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as alternatives, to extract topics from documents. Foremost, we introduce

the required preliminary definitions.

We view all textual content of a user u generated at time interval t,

denoted by mu,t ⊆M, as a single document. A document m is a vector of N

nonnegative integers, where the i-th number shows the occurrence frequency

of the i-th term. N is the number of the unique terms in M. A topic z is a

vector of N real numbers in [0,1], summing to 1, whose i-th number shows

the participation score of the i-th term in forming that topic. Collectively,

Z = {z ∈ [0, 1]N : ||z||1 = 1} is the set of all topics. Topic distribution of a

document is a function τ : M −→ [0, 1]|Z|;∀m ⊆ M, ||τ(m)||1 = 1. Intuitively,

τ maps a document to a set of topics where τ(m)z is the score of topic z for

document m.

In the topic detection subproblem, given M as input, we aim at identi-

fying Z, i.e. the topics formed in the documents posted in time period T

which is possible using various existing methods in the literature including

topic detection methods introduced in [32, 14, 116, 104].

3.2.1 Graph-based approach (GbT)

According to [104], one can utilize signal processing techniques to detect

emerging topics. The fundamental hypothesis behind this topic detection

method is that those terms that have correlated frequency within time could

be considered to be conceptually related and can, therefore, collectively form

a topic. To apply this approach, for any term w ∈ W a term signal is
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constructed. Simply, the term signal shows the number of times the term

has been mentioned across all documents in different time intervals of time

period T. More specifically, a term signal for term w is a temporally ordered

set of integer values, expressed as Xw = (xw,1, xw,2, ..., xw,T), from discrete

observations of term frequencies at T consecutive time intervals, such that

xw,t represents the occurrence number of the term w in all documents posted

at time interval t.

We can calculate the similarity of two terms v and w, denoted by dW(v, w),

based on the cross-correlation of their term signals as follows:

dW(v, w) = Xv ?Xw =
T∑
t=1

(Xv)
∗[t] Xw[t] (3.1)

where X represents term signal, ? is the measure of cross-correlation between

two term signals, and (X)∗ is the complex conjugate of X. Based on this,

an undirected weighted term graph GW = (V,E, g) can be formulated such

that V = W, E = {ev,w : ∀v, w ∈ W} and the weight function g : E → R is

defined as g(ev,w) = dW(v, w).

When the graph is constructed, graph partitioning algorithms such as the

Louvain Method (LM) [15] can be used to identify highly cohesive subgraphs

[104]. Each subgraph represents an emerging topic on the text corpus at a

given time period T. Here, each topic z is an induced subgraph Gz of GW

such that Vz ⊆W, Gz consists of all the edges of GW with incident vertices

in Vz, and |Vz| > 1.

45



In accordance with our definition of topic z ∈ Z, we vectorize Gz to N real

numbers, summing to 1. To do so, for 1 ≤ i ≤ N, we define the ith number

as the degree centrality of the term w if w ∈ Vz and 0 otherwise. Also,

we normalize the result by its L1-norm. Finally, we define topic distribution

function τ(m)[z] = m · z where m is a document, · is the vector dot product,

and z ∈ Z.

3.2.2 LDA-based approaches

LDA assumes that a document is a mixture of topics and implicitly exploits

co-occurrence patterns of terms to extract sets of correlated terms as topics

of a text corpus [14]. Similar to [49, 105], we see all terms extracted from

documents of a user u for each time interval t, i.e., mu,t, as a single document

m ∈M. As another LDA-based approach, we use the Topics over Time (ToT)

model [101] which simultaneously captures term co-occurrences and locality

of those patterns over time and is hence able to discover more event-specific

topics. In both LDA and ToT, z ∈ Z is the multinomial distribution of

terms specific to topic z and the topic distribution function τ is defined as a

Dirichlet distribution with parameter α; notationally, τ(m) ∼ Dir(α).

After detecting topics Z from a given document collection M within a

specific time period T and defining topic distribution function τ using one

the above topic detection methods, our next goal is to identify communities

of users formed on the basis of their temporal relation to the identified topics.
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3.3 User Community Detection

We represent the degree of contribution of a user to each topic z ∈ Z over

multiple time intervals as a vector. Collectively, this forms a multivariate

time series for each user u towards all topics in Z, which we refer to as the

user-topic contribution time series. We calculate the pairwise similarity be-

tween two users by computing the similarity between their corresponding

user-topic contribution time series. Based on these calculated similarities,

we aim at calculating P. However, this would be considered to be a graph

partitioning problem which is NP-hard. Thus, we build a weighted graph

of users and apply Louvain’s heuristic in graph partitioning to detect user

communities. Our approach for identifying temporal topic-based communi-

ties includes three steps: user representation, user similarity calculation, and

user community identification, which are described in details as follows.

3.3.1 User Representation

We model each user’s topics of interest and temporal inclination towards the

topics through user-topic contribution time series. Formally, the user-topic

contribution time series of user u for topic set Z is a temporally ordered

vectors of real values in T consecutive time intervals, expressed as Xu =

(xu,1,xu,2, ...,xu,T). At each time interval t, xu,t is a vector whose elements

xuz,t ∈ R[0,1] show the degree of interest for the user u towards the topic z.

Assuming there are K topics detected, xu,t becomes a K-tuple vector and the
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Figure 3.1: The heatmap for the user-topic contribution time series for the
three sample Twitter users from November till end of December 2010.

user-topic contribution time series will be a K-variate time series.

It is possible to visualize the topic preference time series of each user

by projecting it onto a heatmap, which has been done in Figure 3.1 for the

three sample users introduced earlier in Figure 1.1. In this figure, the y-axis

represents the topic indices, the x-axis denotes the time intervals, and the

cell values show the degree of contribution of the user to that topic. As

shown, topic 44 (highlighted horizontally with blue) represents the ‘War in

Afghanistan’ topic while topic 30 refers to the ‘New Year’ topic. As seen in

the projection, all three users have shown consistent interest in topic 30 and

have started talking about the ‘New Year’ topic starting from late November.

However, their temporal interest pattern with regards to topic 44 is not as

consistent and while @joe and @john are heavily engaged with this topic

in November (as highlighted with the vertical green column), @mary only

becomes involved with the topic in late December (specified with an orange

column on the right most figure of Figure 3.1).
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The user-topic contribution time series can be considered to be a good

measure for finding the similarity between two users according to our defini-

tion of the latent user community. It allows finding like-minded users based

on their temporally-correlated contributions on similar topics. Based on Fig-

ure 3.1, non-temporal topic-based approaches group the three users, namely

@joe, @john, and @mary, in the same community and consider them like-

minded, because they are interested in the same topic, i.e., z44. However, the

user @mary can be considered to be dissimilar from the other two because

the period of time during which she reacts to z44 is not the same.

3.3.2 User Similarity

In order to find the similarity of a pair of users, we compute the similarity

of their corresponding user-topic contribution time series. For this purpose,

we employ the 2-dimensional variation of the cross-correlation measure. The

2-dimensional cross-correlation measure of two matrices A[C×D] and B[C×D],

denoted by XC[(2C−1)×(2D−1)], is calculated as follows:

XC[i, j](A,B) =
C−1∑
c=0

D−1∑
d=0

A[c, d] B∗[c− i, d− j] (3.2)

where B∗ denotes the complex conjugate of B. Intuitively, the 2-dimensional

cross-correlation slides one matrix over the other and sums up the multi-

plications of the overlapping elements. A positive row index i corresponds

to a downward shift of the rows of A over B and a negative column index
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Figure 3.2: 2D cross-correlation in XC[−2, 2].

j indicates a leftward shift of the columns. To make it clearer, Figure 3.2

illustrates how XC[−2, 2] is calculated in two 5×10 sample matrices. A max-

imum correlation occurs at XC[0, 0] if the two signals are similar without any

time shift. We use the normalized value of XC[0, 0] in <[0,1] when calculating

user similarity distances.

We can represent user-topic contribution time series with respect to K

number of topics in Z in T consecutive time intervals as a K×T matrix.

Then, the similarity of two users u and v, denoted as dU(u, v), can be defined

based on the 2-dimensional cross-correlation of their user-topic contribution

time series with no shift (i = j = 0), as follows:

dU(u, v) =
XC[0, 0](Xu,Xv)√
(Xu ·Xu)(Xv ·Xv)

(3.3)
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where Xu is the user-topic contribution time series for user u.

We are now able to calculate the similarity between all pairs of users and

group similar users that share similar temporal exposition towards similar

topics of interest.

3.3.3 User Community

We identify user communities through graph-based partitioning heuristics.

We represent users and their pairwise similarity through a weighted undi-

rected graph. Precisely, let GU = (V,E, g) be a weighted user graph in time

period T such that V = U, E = {eu,v : ∀u, v ∈ U} and the weight function

g : E→ R is defined as g(eu,v) = dU(u, v). After constructing the user graph

GU for a given time period T, it is possible to employ a graph partitioning

heuristic to extract partitions of users that form latent communities. As

in graph-based topic detection, we leverage the Louvain Method (LM). The

Louvain Method is suitable for its following characteristics: i) this algorithm

can be applied to weighted graphs, ii) it does not require a priori knowl-

edge of the number of partitions when running the algorithm, and iii) it is

computationally very efficient when applied to large and dense graphs [90].

While modularity maximization is NP-hard, the complexity of LM’s greedy

implementation is O(nlogn), where n is the number of vertices [15, 90]. Here,

the output is a set of induced subgraphs of GU representing temporal user

communities P that consist of like-minded users who have contributed to the

same topics with the same temporal behaviour and contribution degrees.

51



3.4 Summary

In this chapter, we have proposed an approach to detect communities of like-

minded users who share topics of interest with similar temporal behaviour.

The approach addresses research questions RQ1, i.e., whether the consider-

ation of time plays a role in the quality of the identified communities and

RQ2, i.e., whether temporal content-based user community detection meth-

ods show better performance compared to link-based methods. We model the

contribution of each user towards topics using multivariate time series and

apply 2-dimensional cross-correlation on all pairs of such time series to find

similar users in topics of interest and temporal behaviour. We employ Lou-

vain clustering, a heuristic graph partitioning algorithm based on modularity

optimization, to extract our final user communities. To find topics from the

social network, we used state-of-the-art topic detection methods with dif-

ferent approaches, as alternatives, in order to show that our approach and

its contribution are independent of topic detection algorithms. We used one

graph-based and two probabilistic LDA and ToT methods.

3.5 Related Publications

• Hossein Fani, Fattane Zarrinkalam, Ebrahim Bagheri, and WeichangDu,

“Time-sensitive topic-based communities on twitter”, Advances in Ar-

tificial Intelligence - 29th Canadian Conference on Artificial Intelli-

gence,Canadian AI 2016, Victoria, BC, Canada, May 31 - June 3,
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2016. Proceedings, 2016, pp. 192-204

• Hossein Fani, Ebrahim Bagheri, Fattane Zarrinkalam, Xin Zhao, and
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Chapter 4

Neural User Embeddings

The multivariate user time series method which has been proposed in the

previous chapter falls short due to sparsity in the topic space. Indeed, users

are interested in very few topics instead of all identified topics. The cross-

correlation measure calculates the overall similarity of a given pair of time

series based on all topic-time entries including zero entries. Therefore, for

instance, a user who has similar temporal interest towards the topic ‘War

in Afghanistan’ as the other two users @joe and @john but contributes to

no other topics would not join @joe, @john in the same community. More-

over, this approach is not able to seamlessly incorporate social structure into

temporal and topical analysis (links jointly with content).

While we follow the same assumption about temporality in like-minded

user community detection, we introduce an alternative time-aware topic-

driven method to address these two shortcomings. Inspired by Mikolov et
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al.’s word2vec in computational linguistics [69], we proposed distributional

representation of users (user embeddings).

Basically, the premise of user embeddings is that similar users should

have similar embeddings (or equivalently close points in embedding space).

As the main objective of our work is to identify like-minded user commu-

nities whose members exhibit temporally similar behaviour toward similar

topics of interest, we would like to embed those users who are interested in

similar topics at a certain point in time close to each other, and distant from

those who have similar interest towards the same topics but in different time

intervals. Our proposed temporal topic-driven user embedding model repre-

sents a step forward in this respect compared to our proposed method that

is based on time series analysis.

We build documents whose elements are users, not words. We extend the

concept of co-occurrence of words in documents to users such that two users

co-occur if they show the same interest toward the same topics in similar

time intervals. The key contribution of this method is to learn user vector

representations from users’ topics of interest with the expectation that tem-

porally like-minded users end up closer to each other in the vector space. We

hypothesize that an appropriate embedding method would bring significant

performance into our main downstream task of like-minded user community

detection compared to the state of the art. To build user embeddings, we first

formally formulate what we mean by a like-minded pair of users. Then, we

propose an embedding method which preserves pairwise like-minded prox-
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imity of the users through maximizing the likelihood that two like-minded

users stay close to each other in vector space.

Similar to the multivariate user time series method, the proposed neural

user embeddings are to address research questions RQ1, i.e., whether the

consideration of time plays a role in the quality of the identified communities

and RQ2, i.e., whether temporal content-based user community detection

methods show better performance compared to link-based methods.

Our work in this chapter moves beyond the proposed neural user em-

beddings and is extended to interpolating users’ social network connections

(links) as well as users’ interests over time (temporal content). Earlier non-

temporal user community detection methods have already shown improve-

ment when incorporating social network structure (links) with topics of in-

terest (content) compared to those in which links and content are used sep-

arately [93, 113]. However, to the best of our knowledge, existing temporal

user community detection methods are only content-based and hence do not

study the effect of social network structure and temporal evolution of user

content simultaneously. Our experiments show that while social network

structure is not a discriminative enough feature on its own for identifying

high quality user communities, it does improve the quality of the identified

user communities when effectively interpolated with temporal contents. It is

worth noting that the social network structure is assumed to be static and

remains stable over time in our work. The main reason for this assumption

is that the social network structure has a significantly lower pace of change
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compared to how fast content is generated over time and distributed across

the social network [74].

In order to simultaneously consider users’ temporal content and their

social network structure when identifying user communities, we embed both

users’ temporal interests and their social network structure into a dense vec-

tor representation using neural embedding mechanisms. The user embed-

dings, which are derived from two different information sources (modalities),

i.e., i) temporal content-based embeddings based on users’ topics of interest

over time, and ii) network embeddings based on social network neighbor-

hoods, are linearly interpolated to build a single final multimodal user em-

bedding. The linear interpolation of two user embeddings at the embeddings

level allows us to investigate how and to what extent users’ dynamic topics

of interest and/or users’ social network structure contribute to the quality

of the inferred user communities. We perform experiments on Twitter data

and evaluate our work in two application scenarios: news recommendation

and user prediction, to explore the impact of the different user embeddings

and their interpolation.

Beyond RQ1 and RQ2, this chapter also addressed RQ3, i.e., whether

link-based and temporal content-based community detection methods have

synergistic effect on each other.

In summary, the main contributions of this chapter are as follows:

1. We propose a community detection method that considers users’ topical

interests and their temporal evolution in tandem by learning neural user
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representations, which embeds users in an embedding space where those

users who have similar inclination towards similar topics in similar time

intervals will be embedded close to each other.

2. We employ neural graph embedding techniques to embed information

from users’ social network structure into user representations.

3. We build a single set of multimodal embeddings from embeddings of

temporal social content and social network structure through their lin-

ear interpolation in order to elucidate the contribution of users’ tem-

poral content on the one hand, and social network structure, on the

other hand, for finding user communities.

4. We identify temporal content-based user communities which are top-

ically, temporally and structurally cohesive, based on our multimodal

user embeddings.

4.1 Approach Overview

Having formally laid out the problem in Section 3.1, i.e., given a set of users

U, partitioning of U, denoted by P, into non-overlapping subsets C is desired

in which each u ∈ U is only a member of one subset such that P = {C : C ⊆

U, |C| > 1}; ∀Ci,Cj 6=i ∈ P : Ci ∩ Cj = ∅ and members of each Ci in P show

highly similar temporal disposition with regards to active topics on the social

network and high dissimilarity with members of any other Cj 6=i ∈ P, we seek
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Algorithm 1 Overview of the proposed approach to find user communities

Inputs:
U, the set of users;
D = (U,M,T), temporal social content;
G = (U,A), the social network;

Output:
P = {C : C ⊆ U, |C| > 1} such that ∀Ci,Cj 6=i ∈ P : Ci ∩ Cj = ∅

1: parallel exec: //User representation learning - parallel execution
2: WD = f(D); //Temporal content-based user embeddings, § 4.2.
3: WG = g(G); //Link-based user embeddings, § 4.3.
4: W = h(WD,WG){return αWD + (1−α)WG; }; //Interpolation, § 4.4.
5: P = Cluster(U,W) //User community detection, § 4.5.

to find P through three pipelined phases: 1) temporal content-based and

topological user representation learning (Sections 4.2 and 4.3 respectively),

2) interpolation of user embeddings (Section 4.4), and 3) user community

detection (Section 4.5). Foremost, we provide an overview of this process

after which the details of each step will be presented.

The overview of the approach discussed in this chapter to find user com-

munities is outlined in Algorithm 1. We define temporal social content as

D = (U,M,T) where U is the user set, M is the textual user-generated

content corpus (e.g., tweets), and T is the time period broken down into

time intervals. We define the social network structure as a directed graph

G = (U,A) whose vertices are users in U and edges are ordered pairs of user

elements such as (u, v) ∈ A indicating a social tie from u to v (e.g., u is

following v).

Our proposed approach consists of creating user representations from two
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different information sources (modalities), i.e. 1) temporal content-based

embeddings from temporal social content D = (U,M,T), and 2) link-based

embeddings from the social network structure G = (U,A). On Line 2 of Al-

gorithm 1, we learn user vector representations WD from users’ content with

the expectation that temporally like-minded users end up closer to each other

in the vector space. To build this type of user embeddings, we first formally

formulate what we mean by a like-minded pair of users with respect to social

content only. Then, we propose a representation learning method, which

preserves pairwise proximity of the users through maximizing the likelihood

that two like-minded users stay close to each other in vector space. Likewise,

on Line 3, we learn user vector representations WG but from users’ social

network neighborhood with the assumption that similar users are those that

are densely connected to each other due to homophily. We use unsupervised

random-walk based graph representation learning to learn user representa-

tions such that geometric relationships in the learned vector space reflect

the structure of the original social network. Learning vector representations

from temporal social content and social network structure are independent

and could be run in parallel (Line 1). These monomodal user representations

are then linearly interpolated into a single consolidated multimodal represen-

tation on Line 4 tailored for the task of user community detection on Line

5.
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4.2 Temporal Content-based User Embeddings

In order to learn temporal content-based neural embeddings (WD) for social

network users, we consider social content to be in the form of a triple D =

(U,M,T) where U is the set of users, M is the collection of content generated

by U and T is the number of consecutive time intervals. We identify a

set of topics Z from M over the T time intervals as we did in Section 3.2

and build user-topic contribution time series for each user accordingly as in

Section 3.3.1. The user-topic contribution time series of each user u ∈ U

towards a set of identified topics Z over time intervals 1 ≤ t ≤ T is a K-

variate time series Xu = (xu,1,xu,2, ...,xu,T) where xu,t is a vector of elements

xuz,t ∈ R[0,1] showing the degree of interest for the user u towards the topic z

at time interval t. The stacking of all users’ topic preference time series will

generate a cuboid X = {xuz,t : u ∈ U, z ∈ Z, 1 ≤ t ≤ T}.

4.2.1 Temporal Context Model

One key novelty of this work is to learn user vector representations from

users’ content with the expectation that temporally like-minded users end

up closer to each other in the vector space. To build user embeddings, we

first formally formulate what we mean by a like-minded pair of users with

respect to social content only within time. Then, we propose an embedding

method which preserves pairwise like-minded proximity of the users through

maximizing the likelihood that two like-minded users stay close to each other

61



in vector space.

The premise of our approach is that the more two users share common

interests in similar time intervals, the more similar these users would be

and hence the likelihood of these users being in the same community should

increase. As an example, let us consider the same three users that were

introduced in Figures 1.1 and 3.1 earlier. Figure 4.1 shows a subset of the

topic preference time series of these three users for a 10 day time period for a

limited set of topics. An interesting observation is that while the visualization

of the users’ topic preference time series based on a heatmap in Figure 3.1

showed us that users @joe and @john share similar temporal interests, which

is different from @mary, it becomes clear that the actual degree of interest

is not within the same range. For instance, even for the two users who

are considered to be quite similar, their degrees of interest for Topic 44 are

0.35 and 0.14, respectively, which are quite different. This shows that it

would be quite difficult to identify users that not only have similar temporal

trends but also similar degrees of interest. For this reason, we relax the

similarity condition to allow for cells with similarity values within a range to

be considered to be similar. The softened condition of similarity is referred

to as the condition of homogeneity. For the sake of clarifying the concept of

condition of homogeneity, let us assume that any degree of interest below 0.1

is insignificant and can be ignored (shown in grey in Figure 4.1). Assuming

the condition of homogeneity considers values above 0.1 to be similar, users

@joe and @john will now share four regions of similarity in Figure 4.1. This
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would not be possible without this relaxed condition. On the other hand,

@mary still maintains its difference with the other two users with only one

and zero regions of interests with the other two users. Based on the condition

of homogeneity, we now consider @joe and @john to be similar as they share

the many similar regions and @mary to be distant from them.

The condition of homogeneity and the number of shared regions between

users allows us to formally define an objective function for learning user

embeddings. Our objective function will endeavor to place those users who

share many regions of similarity close to each other and far away from those

users who do not share any regions of similarity with them. Expressed more

formally, the shared regions between two users act as a context for the users

when they are embedded into a neural embedding space. For instance, the

four shared regions for @joe and @john act as context for each of the users

and allows our embedding model to learn similar representations for these two

users. In the following, we will propose a deterministic method for finding

shared regions between any two users, which will be later used as context for

learning user embedding representations. We first define the shared regions

as follows:

Definition 1. Region of Like-mindedness. A three-dimensional sub-

space of X, such as R, is defined to be a region of like-mindedness iff (1)

all the values in this subspace are equal with respect to a certain condition of

homogeneity c; notationally, ∀x, x′ ∈ R; c(x) = c(x′) and (2) it is maximal

such that there exists no other regions of like-mindedness such as R′ such
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Figure 4.1: Topic preference time series for three sample Twitter users in
Figure 3.1 with {u1 = @joe, u2 = @john, u3 = @mary} × {z40 .. z45} × t ∈
{20 .. 30}. The values are unnormalized probabilities for every topic in
each document, most of which are equal to the smoothing parameter alpha
(α = 5.0

|Z| ) in the LDA topic modeling method. Also, the values are rounded
to two digit precision.

that R is subsumed by R′. The set of all regions of like-mindedness is called

R.

We adopt a similar strategy to [118] to find the set of all regions of like-

mindedness R in X. First, we find R in user and topic dimensions at each

time interval t. The output is two-dimensional (2-d) regions indexed by time

interval 1 ≤ t ≤ T, i.e., Rt. Then, we merge Rt of different time intervals to

build the required R. The details are as follows:

Finding R for time interval t (Rt). The process for finding Rt is
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dependent on X and the condition of homogeneity denoted by c. We let

xuzi,t be the extent of u’s interest in zi and define Uzizj ,t(c) to be the set of

all those users who are interested in both topics zi and zj given c. In our

definition, Uzizj ,t(c) is considered to be maximal if it is not possible to include

an additional user while maintaining c. Based on Ut = {Uzizj ,t(c) : zi, zj ∈ Z},

we form a multigraph Gt = (Z,Ut) whose nodes are the set of topics and for

each Uzizj ,t(c) ∈ Ut a directed edge connecting zi to zj is added to Gt, which

is labeled with the set of users in Uzizj ,t(c).

In Figure 4.2, we clarify how the multigraph would look like by visualizing

it for time interval 22 for the three users introduced earlier. We assume

two alternatives for the condition of homogeneity, i) regions that have a

value above 0.1 will be considered to be similar, and ii) regions that have

a value above 0.1 and the differences of values fall in the range [0, 0.1) will

be considered to be similar. The multigraphs are shown in Figure 4.2(a)

and 4.2(b) respectively.

Once the multigraph has been constructed for time interval t (Gt), we

perform a depth first search traversal on Gt in order to find Rt, a process

which has been outlined in Algorithm 2. We initially commence the process

by considering all of the users with an empty set of topics (r = U × ∅; all

users U). The algorithm gradually considers each topic and incrementally

adds it to the set. In each recursive stage, we have a candidate denoted as

r = A × B and a set of yet-to-be-processed topics C. The candidate will be

added to Rt if it satisfies the condition of homogeneity and is not already
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Figure 4.2: The Multigraph constructed from the three users introduced in
Figure 1.1 in time interval t22 when the condition of homogeneity c is (a) a
value above 0.1, and (b) the difference of values above 0.1 falls in the range
of [0, 0.1).

subsumed by another region. Since in graph Gt, we only create a region of

like-mindedness based on a topic (loop) or a pair of topics (directed edge), we

need to check condition c as we traverse a DFS path over the directed edges

of the graph in order to extend the region of like-mindedness to include more

topics and users. Further, we remove all other regions that are subsumed by

r when r is added to Rt (Lines 2 to 4). Once r is added, we now expand its

topic set to include one of the remaining topics that have not been considered

yet as long as there is a directed edge between a topic in r and the new topic

in Gt. The algorithm is recursively called on the new candidate that includes

a new topic (Lines 5 to 12).

For the sake of further clarification, let us review the process proposed

in Algorithm 2 for the multigraph depicted in Figure 4.2(a). The algo-

rithm starts by initializing r to consist of all the three of the users but

an empty set of considered topics and a complete set of unexplored top-
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Algorithm 2 Finding regions of like-mindedness for time interval t (Rt)

Inputs:
c, homogeneity condition;
Gt, multigraph at time interval t;
U, set of users;
Z, set of topics of interest;

Output:
Rt, set of regions of like-mindedness for time interval t

Initialization:
Rt = ∅;
find r t(r = U×∅,C = [z1, z1, z2, z2, ..., z|Z|, z|Z|]);

1: procedure find r t(r = A× B,C)
2: if (r |= c) ∧ (@r′ ∈ Rt : r ⊂ r′) then
3: ∀r′′ ∈ Rt if r′′ ⊂ r then Rt ← Rt \ r′′
4: Rt ← Rt ∪ r

5: for all zj ∈ Z do
6: A← r.A; B← r.B ∪ zj ; C← C \ zj
7: if r.B = ∅ then find r t(A× B,C)
8: else
9: for all zi ∈ r.B do

10: for all (zi → zj) ∈ Ut do
11: A← r.A ∩ Uzizj ,t

12: find r t(A× B,C)

ics (r = {u1, u2, u3} × ∅,C = [z40, z40, z41, z41, ..., z45, z45]). The algorithm

then selects the first topic (Topic 40) by removing it from C and adding

it to the empty set of topics in r (Line 7). Given the current state of r

({u1, u2, u3} × {z40}) does not satisfy the condition for homogeneity, we se-

lect the next topic, which is again Topic 40 given the directed looping edge.

The new r ({u1, u2}× {z40}) now satisfies the condition of homogeneity and

is hence added to Rt (Line 4). The subsequent step is to consider Topic

41 because there is a direct edge from Topic 40 to Topic 41. Based on this

transition, the new r will be {u2}×{z40, z41}, which produces a new element

in Rt.
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Finding regions of like-mindedness (R). Algorithm 2 identifies Rt

separately for each of the time intervals; however, we will need to identify R

across the whole time period that spans all of the individual time intervals.

We adopt a similar strategy for expanding the individual Rts into R as

explained in Algorithm 3. We build a multigraph G which consists of the

time intervals as its nodes and edges representing transitions between time

intervals such as i and j only when {r.A∩r′.A}×{r.B∩r′.B}×{i, j} satisfies

c given two regions r ∈ Ri and r′ ∈ Rj.

Algorithm 3 Finding regions of like-mindedness (R)

Inputs:
c, homogeneity condition;
U, set of users;
Z, set of topics of interest;
G, multigraph for the whole time intervals;
Rt for each time interval 1 ≤ t ≤ T;

Output:
R, set of regions of like-mindedness for the whole time intervals

Initialization:
R = ∅;
find r(R = U× Z×∅, D=[1, 1, 2, 2, ..., T, T]);

1: procedure find r(R = A × B × C, D)
2: if (R |= c) ∧ (@R′ ∈ R : R ⊂ R′ then
3: ∀R′′ ∈ R if R′′ ⊂ R then R ← R \ R′′

4: R ← R∪R
5: for all j ∈ D do
6: A← R.A; B← R.B; C← R.C ∪ j; D← D \ j
7: if R.C = ∅ then
8: find r(A × B × C, D)
9: else

10: for all i ∈ R.C do
11: for all (i→ j) ∈ G do
12: //r ∈ Ri, r

′ ∈ Rj : {r.A ∩ r′.A} × {r.B ∩ r′.B} × {i, j}
13: A ← R.A ∩ {r.A ∩ r′.A}
14: B ← R.B ∩ {r.B ∩ r′.B}
15: find r(A × B × C, D)
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Algorithm 3 produces R = A×B×C ∈ R where A is a set of users who

have the similar interests towards topics in B in time intervals in C based

on a defined condition of homogeneity. In essence, this provides us with

information on which users, when and how, expressed similar preferences

towards topics of the social network. This is valuable for determining which

users are similar to each other across different time intervals and topics.

Those users who are placed together in the same R can be considered to be

more similar to each other compared to those users who are not in the same

R. We consider regions of like-mindedness such as R to serve as context for

each user. Based on such context, we would like to learn user embeddings

that maximize the likelihood of users who have been seen together in the

same Rs to be close to each other in the embedding space and those who

are not seen together to be embedded far apart from each other. Let us first

discuss the time complexity of finding regions of like-mindedness.

Time complexity analysis. In each time interval t, it takes O(|U| ×

|Z|2) to calculate Uzizj ,t(c) for all pairs of zi and zj ∈ Z and build the multi-

graph Gt considering the fact that testing the condition of homogeneity can

be done in O(1). Furthermore, performing depth-first-search (DFS) on the

graph to find regions of like-mindedness Rt takes O(|U||Z|) in the worst case,

which happens when there exists an edge between each pair of zi and zj

associated with Uzizj ,t(c) containing only one user. The analysis of the time

complexity for finding R is similar but in the context of the number of time

intervals and the size of Rt for each time interval. Here, for each pair of time
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intervals i and j, and a pair of Ri and Rj, we test the condition of homo-

geneity which takes O(|r| × T2) plus a final DFS in O(|r|T) where |r| is the

number of all Rt. As seen, the most expensive parts are the DFS traversal

on the multigraphs in the first and second steps which highly depend on the

condition for homogeneity c.

We would like to note that the proposed method is efficient in practice

because of the following considerations:

1. In the real world, users are only interested in a limited set of topics

in each time interval and over the whole time period. For this reason,

users’ topic preference time series are quite sparse with many topics

not even examined or relevant for each user. Therefore, the number of

edges in the multigraphs is quite small. Recall that one of the major

components of the time complexity of the method was due to the DFS

traversal, which will be quite small given the sparsity of the multigraphs

in practice.

2. In addition, the depth of the DFS traversal is quite shallow given the

fact that the number of users is far larger than the number of topics and

time intervals. When compared to the number of users, the number of

topics and time intervals can be considered to be constant values.

3. Algorithms 2 and 3 can be easily parallelized across different time in-

tervals.
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4.2.2 Temporal Content-based User Vector Represen-

tation

We approach the problem of learning user representations as a maximum

likelihood (ML) problem through which similar users to a given user are

identified based on the user’s context. We define the context for each user

to consist of all those users who have been observed with this user in similar

regions of like-mindedness (R). As such, the more two users are seen in each

other’s contexts, the more likely it would be for them to be similar to each

other. We adopt the continuous bag-of-word (CBOW) model from [69] to

learn user representations.

Definition 2. Temporal Content-based User Embedding Objective.

Given the set of all regions of like-mindedness R, the embedding function

f : U −→ Rd maps each user u ∈ U onto a d-dimensional real space [0, 1]d; d�

|U|, such that the following objective is optimized:

arg max
f

∑
R∈R,u∈R

log Pr(u|R \ u) (4.1)

In order to make the optimization tractable, we assume conditional in-

dependence for observing users in a region of like-mindedness. So,

Pr(u|R \ u) =
∏
v∈R\u

Pr(u|v) (4.2)
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Figure 4.3: The neural network architecture to learn temporal content-based
user vector representations.

We adopt the architecture shown in Figure 4.3 to learn user representa-

tions. It should be noted that the size of the hidden layer (d) will be the

size of the user representation vectors. Furthermore, given the model learns

to predict a user given its context, the size of the input and output layers is

equivalent to the number of users. We use a one-hot encoding representation

to refer to users in the input (I) and output layers. The structure of the

hidden layer neurons is linear H = W>
DI where WD has a size of |U|× d and

is the input to the hidden layer. Similarly, the weights between the nodes in

the hidden and output layers are denoted by W′
D of size d × |U|. Also, we

refer to a user v’s corresponding row in WD as Vv The network performs

user prediction given its context through a softmax function by approximat-

ing the likelihood of observing the target user v given some other user u

observed together in at least one region of like-mindedness. This conditional
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probability is defined as follows:

Pr(u|v) =
exp(V′>u H)∑

w∈U
exp(V′>w H)

=
exp(V′>u Vv)∑

w∈U
exp(V′>w Vv)

(4.3)

Given the conditional independence assumption in Equation (4.2) and the

above conditional probability in Equation (4.3), we can simplify Equation

(4.1) as:

arg max
f

∑
R∈R,u∈R

[ ∑
v∈R\u

[
(V′>u Vv)− log

∑
w∈U

exp(V′>w Vv)
]]

(4.4)

However, this formulation is computationally intractable as its time com-

plexity is proportional to the size of U. Morin and Bengio [73] have proposed

hierarchical softmax to approximate the full softmax efficiently in practice.

Accordingly, instead of a matrix, the hidden layer to output layer connection

is a binary Huffman tree whose leaves are users. For each user u, there is a

path u1, u2, ..., uh(u) of height h(u) from the root, u1, to her respective leaf,

uh(u). This choice leads to speedup from O(|U|) to O(log|U|). Hierarchical

softmax defines Pr(u|v) as follows:

Pr(u|v) =

h(u)−1∏
i=1

s((−1)(ui+1 6=child(ui)) ×V′ui
>
Vv) (4.5)

where s(x) is the sigmoid function. V′ui
>
Vv shows the similarity between

the vector representation of user v and the internal user ui. At each internal
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user ui, if we choose the left (right) child as the correct ui+1 in the path

from the root to the user’s leaf, we have the probability s((−1)0×x) = s(x),

else the right (left) child would result in s((−1)1 × x) = s(−x) such that

s(x) + s(−x) = 1. The intuition is that the more an output user u is similar

with the ancestors of input user v, the higher the probability would be that

they are the same.

Our neural network is trained using stochastic gradient descent and up-

dates WD and W′
D gradually via backpropagation. After the training con-

verges, a pair of like-minded users u, v ∈ U will have highly similar vector

representations, denoted by Vu and Vv in WD with respect to the temporal

social content D = (U,M,T).

The next step of our work is to learn vector representations of users

with respect to social network structure G = (U,A), denoted by WG. More

specifically, we are interested in providing a concrete implementation for g(G)

on Line 3 of Algorithm 1.

4.3 Link-based User Embeddings

Given a social network structure in the form of a double G = (U,A) where U

is the set of users and A is the connections between the users, our objective in

this section is to learn neural user representations based on the global position

of a user in G and the structure of her local neighborhood. We employ

an unsupervised representation learning method to encode this information
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into a low-dimensional dense feature vector in latent space such that the

geometric relations in this latent space correspond to social connections (e.g.,

link or path) in G. Specifically, user embeddings are inferred by maximizing

the probability of observing subsequent users in random walks of the graph

conditioned on the source user. We formulate user embeddings learnt from

the social network structure in a unified framework as follows.

4.3.1 Neighborhood Context Model

Based on the homophily principle, similar users tend to form ties in a social

network [68]. As such, groups of densely connected users could be a sign of a

user community. In the context of the social network structure, users would

be considered to belong to similar communities if they share similar neigh-

borhoods and, as such, are to be placed close to each other in the embedding

space. The shared neighborhood, hence, presents a context with respect to

the social network structure as opposed to the regions of like-mindedness in

the temporal context model (Section 4.2.1) or co-occurrence context in word

embeddings. There are different strategies for building a neighborhood for a

user. For instance, depth-first-search (DFS) and breadth-first-search (BFS)

are two immediate, yet extremely biased ways to generate different samples

of neighborhoods for a user. BFS favours structural equivalence, that is, those

users who share similar structural roles such as hubs and are not necessar-

ily connected and could be anywhere in the network, should be embedded

closely together. Being more community aware, DFS in contrast, respects ho-
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mophily and leads to similar (close) embeddings for densely connected users.

In practice, online social networks exhibit mixture behaviours through which

some parts show homophily while the other parts reflect structural equiva-

lence. For this reason, stochastic sampling methods, such as random walk,

have been introduced to randomly sample different neighborhoods of the

same source user. Random walks are also computationally efficient in terms

of both space and time [43]. As a result, we form a network neighborhood

of a user based on random walks in this work, which is formally defined as

follows:

Definition 3. Network Neighborhood. The network neighborhood of a

given user u ∈ U, denoted by Nu, is a set of random walks of length l rooted

at u on a possibly infinite social network structure G = (U,A) generated by

a stochastic process with random variables [x1:l] such that x1 = u and xl is a

user chosen from the neighbors of xl−1 according to a probability distribution

Pr(xl = w|xl−1 = v) if (v, w) ∈ A and 0 otherwise. The set of network

neighborhoods for all users is denoted by N .

While graph embedding methods such as DeepWalk [80] use a pure (un-

biased) random walk based on the uniform distribution, other methods [43]

introduce parametric biased random walk to trade off between breadth-first

or depth-first searches to preserve community structure as well as structural

equivalence between users. For instance, the work in [43] proposes a second

order random walk with two parameters p (return parameter) and q (in-out
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parameter) in Pr(xl = w|xl−1 = v) to bias the walk as follows:

Pr(xl = w|xl−1 = v) =


1/p if d(xl−2, v) = 0

1 if d(xl−2, v) = 1

1/q if d(xl−2, v) = 2

(4.6)

where d(., .) denotes distance of the shortest path between users in an un-

weighted graph. While higher p values favour exploration and avoid revisiting

already seen users, higher q allows the search to obtain a local view and ap-

proximate BFS behaviour. Unbiased random walks can be seen as a special

case when p = q = 1.

4.3.2 Link-based User Vector Representation

Once network neighborhoods for all users have been obtained, we learn a

user vector representation for each user by optimizing the conditional prob-

ability of observing users in the same walk as her. The process is similar

to Section 4.2.2 as network neighborhoods can be seen as similar to regions

of like-mindedness. To infer the user embeddings, we optimize the following

embedding function:

Definition 4. Link-based User Embedding Objective. Given the set

of network neighborhoods N =
⋃
u∈U Nu, the embedding function g : U −→

Rd maps each user v ∈ U onto a d-dimensional real space [0, 1]d; d � |U|,

such that the following objective function is optimized, assuming conditional
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independence:

arg max
g

∑
Nv∈N

log Pr(Nv \ v|v) = arg max
g

∑
Nv∈N

log(
∏

u∈Nv\v

Pr(u|v))

= arg max
g

∑
Nv∈N

∑
u∈Nv\v

Pr(u|v)

(4.7)

We use the same neural architecture as shown in Figure 4.3 but here,

given user v, we predict observing users such as u from v’s neighborhood,

adopting the skip-gram model from [69]. The hidden layer H is of size d,

the input to hidden layer connections is represented by matrix WG of size

|U| × d with each row representing a vector for each user. The input layer I

is a one-hot encoded vector and the hidden layer’s neurons are all linear such

that H = W>I. Given a user v in the input layer, H is the transpose of v’s

corresponding row in WG, denoted as Vv. In the same way, the connections

from the hidden layer to the output layer can be described by matrix W′
G of

size d×|U|. The softmax function approximates the probability of observing

user u taken from Nv from the same random walk, i.e.,

Pr(u|v) =
exp(V′>u H)∑

w∈U
exp(V′>w H)

=
exp(V′>u Vv)∑

w∈U
exp(V′>w Vv)

(4.8)

where V′u is u’s corresponding column of matrix W′
G. However, calculating

the normalization factor in the denominator is not feasible. Hierarchical

softmax and negative sampling are two promising alternatives to accelerate
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the computation. Stochastic gradient descent is used to train the neural

network and the derivatives are estimated using backpropagation. Users’

vector representations with respect to social network structure G = (U,A)

are vectors of WG.

4.4 Embeddings Interpolation

Having learnt two different user vector representations of users from the

temporal social content D = (U,M,T) and the social network structure G =

(U,A), denoted by WD and WG, respectively, the next step is to integrate

them into a single vector representation, denoted as W, by an interpolation

function h(WD,WG) defined on Line 4 of Algorithm 1. We adopt a linear

weighting mechanism to interpolate the embeddings mined from the social

network structure and temporal social content. Formally,

h(WD,WG) = αWD + (1− α)WG (4.9)

where α denotes a weighting coefficient to interpolate between temporal con-

tent and social network structure in the final user vector representation. For

instance, if α = 0, the interpolated embeddings lead to the conventional link-

based user community detection on the one extreme. On the other extreme,

it will solely rely on temporal content if α = 1 and becomes a pure temporal

content-based method. The effect of embedding interpolation to the overall
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performance of user community detection is evaluated by choosing α ∈ R[0,1].

Although simple, linear weighting is uninformed, easy to implement, inter-

pretable, and could achieve competitive performance across a wide span of

different data types and domains [45, 8, 7]

4.5 Community Detection

Given the interpolated user vector representation W = h(WD,WG), we

identify communities of users through graph-based partitioning heuristics.

We represent users and their pairwise distances through a weighted undi-

rected graph. Precisely, let G = (U,E, w) be a weighted user graph such

that E = {eu,v : ∀u, v ∈ U} and the weight function w : E −→ R[0,1] defined

as w(eu,v) be the dot-product, or angle, between u and v’s embeddings in

W. It is possible to employ a graph partitioning heuristic to extract clusters

of users that form latent communities. We leverage the Louvain Method

(LM) [15] as it i) can be applied to weighted graphs, ii) does not require a

priori knowledge of the number of partitions, and iii) has an efficient linear

time complexity for the problem of graph partitioning. As a result of the

application of LM, a set of subgraphs such as G[C] are induced where the

edges in each subgraph have both ends in the same subgraph. The collection

of these subgraphs form the set of user communities P desired in the problem

definition presented in Section 3.1.
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4.6 Summary

In this chapter, we have proposed an approach to detect communities through

multimodal feature learning (embeddings) of users from their i) temporal

content, ii) social network neighborhood. With respect to the temporal con-

tent, we model the users’ temporal contribution towards topics of interest by

introducing the notion of regions of like-mindedness between users. These

regions cover users who share not only similar topical interests but also sim-

ilar temporal behaviour. Given the regions of like-mindedness as context,

we train a neural network such that the probability of a user in a region

is maximized given other users in the same region (Section 4.2). With re-

gard to the social network neighborhood, we learn user embeddings based

on their social network connections (links) through neural graph embeddings

(Section 4.3). We then interpolate temporal content-based embeddings with

social link-based embeddings to capture both sources of information for rep-

resenting users (Section 4.4). The approach addresses research questions

RQ1, i.e., whether the consideration of time plays a role in the quality of

the identified communities and RQ2, i.e., whether temporal content-based

user community detection methods show better performance compared to

link-based methods, as well as RQ3, i.e., whether link-based and temporal

content-based community detection methods have synergistic effect on each

other.
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Chapter 5

User Community Prediction

Not only the detection of user communities up until the current point in

time is of high importance, but also their analysis in future time intervals

can be of interest due to their wide range of applications such as personal-

ized recommendations and marketing campaigns. Temporal content-based

user community detection methods like the proposed methods in the previ-

ous chapters incorporate temporal aspects of users’ content and stress that

users of the same community would ideally show similar interest patterns for

similar topics over time. However, users’ temporal content is only used for

pairwise user similarity calculation to build content-based user communities

as opposed to user similarity prediction. As a result, they have limited appli-

cability for identifying user communities of the future. In other words, unlike

temporal content-based user community detection methods, which employ

users’ temporal and topical interests for calculating pairwise user similarities
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in order to identify user communities up until now, our work in this chap-

ter employs such information for predicting user communities in the future,

which is a step forward compared to the state of the art.

In this chapter, we propose two methods to predict content-based user

communities in the future: Granger regression (G-regression) and temporal

latent space modeling. In Granger regression, we propose to consider both

the temporal evolution of users’ interests as well as a stricter form of inter-

user influence through the notion of causal dependency. We employ Granger

causality to determine the degree of inter-user influence that can be used to

identify which users play influential roles in the behavioural evolution of one

or more other users. Based on Granger causality, we identify a causing user

c to influence the affected user e if and when the past observations of c lead

to a more accurate prediction of the behaviour of e above and beyond the

information contained in past observation of e alone. Although the proposed

G-regression method shows promising results to identify user communities

in the future, it requires building predictive models on a per user basis and,

hence, is practically prohibitive.

In the second method, we propose a temporal latent space model for

user community prediction in social networks, whose goal is to predict future

emerging user communities based on past history of users’ topics of interest.

Our model assumes that each user lies within an unobserved latent space,

and similar users in the latent space representation are more likely to be

members of the same user community. The model allows each user to adjust
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her location in the latent space as her topics of interest evolve over time. In

this method, although we use temporal information to predict future users’

topical interests similar to the proposed G-regression method, we train only

one model for all users and, thus, significantly reduce computational cost

compared to G-regression techniques.

These two proposed methods are intended to address RQ4, i.e., whether

it is possible to predict future-yet-unobserved content-based communities on

social networks.

5.1 Granger regression (G-regression)

Users’ topics of interest show the dynamic evolution of user behaviour in

online social networks, whose effective prediction can be utilized for the task

of community prediction. Common time series models, which use observa-

tions from past time intervals to predict the users’ future topics of inter-

est, have an independence assumption that users’ behaviour is considered

to evolve independently from that of the other users. These methods over-

look the explicit or implicit social interactions that are inherent to social

networks. On the other hand, time-aware collaborative filtering approaches

such as TimeSVD++ [57] and recurrent recommender network (RRN) [106]

propose a valuable step forward by integrating the individual and collective

perspectives of the users in addition to their temporal evolution patterns

(non-stationarity) under the traditional collaborative filtering framework.
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Successful as they are, these approaches, however, do not consider strict inter-

user dependence (social influence) and only benefit from users’ behavioural

correlation to make predictions. In contrast, social-aware recommender sys-

tems such as TrustSVD [46] and SocialPMF [53] have already been proposed

to address this issue but they in turn overlook temporal evolution.

We propose to consider both the temporal evolution of users’ interests

as well as a stricter form of inter-user influence through the notion of causal

dependency. We employ Granger causality [42] to determine the degree of

inter-user influence that can be used to identify which users play influential

roles in the behavioural evolution of one or more other users. Based on

Granger causality, we identify a causing user c to influence the affected user

e if and when the past observations of c lead to a more accurate prediction

of the behaviour of e above and beyond the information contained in past

observation of e alone. This leads to a weighted directed network of users,

denoted by the influence network, in which the edges depict the influence

direction of its adjacent users. We use the influence network to perform

interest prediction. Specifically, given a topic of interest z and a user e,

we find e’s influential neighbor(s) from the influence network such as c and

build a vector autoregression model (VAR) based on e and c’s user-topic

contribution time series to predict e’s degree of interest toward topic z in the

future. Last, a weighted undirected graph is formed over the users and their

pairwise similarity on predicted degrees of interest in the future, on which

the Louvain method [15] is applied to find user communities in the future.

86



In summary, our G-regression approach consists of users’ topic contribu-

tion detection, users’ influencers identification, users’ future topics of interest

prediction, and user community detection in the future. In the following, we

describe the details of each step.

5.1.1 User Topic Contribution Detection

To capture users’ topic contribution, we build user-topic contribution time

series representing users’ interests towards topics over time similar to Sec-

tion 3.3.1. Given a set of topics Z within T time steps (e.g. days) extracted

by a topic detection method and a set of users U, the user-topic contribution

time series of user e is expressed as Xe = (xe,1,xe,2, ...,xe,T). At each time

interval t, xe,t is a vector whose elements xez,t ∈ R[0,1] show the degree of

interest for the user e towards the topic z. Assuming there are K topics

detected, xe,t is a K-tuple vector and the user-topic contribution time series

will be a K-variate time series.

We identify influence relations between users on a per topic basis. We

break down the K-variate user-topic contribution time series into K uni -

variate time series Xez = (xez,1, xez,2, ..., xez,T) indicating the contribution by

user e for topic z within time period T.

The main objective of the proposed G-regression method is to accurately

predict xez,T+1;∀z ∈ Z,∀e ∈ U.
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5.1.2 User Influence Identification

We leverage the influence between users when delivering their topics of inter-

est over time to predict users’ topics of interest. The influence that one user

might exert on the other is identified through Granger causality [42]. Granger

causality has been perceived as a predictive notion of causality between time

series [13] and as such in our case, it can be applied to the user-topic con-

tribution time series. In the bivariate case, user e, the effect, is said to be

influenced (Granger-caused) by another user c, the cause, with respect to

topic z, if and only if, regressing on past values of both e and c’s topic con-

tribution time series is statistically significantly more accurate than doing

so with past values of e alone. Formally, let Xez = (xez,1, xez,2, ..., xez,T) and

Xcz = (xcz,1, xcz,2, ..., xcz,T) be two stationary topic contribution time series

of user e and c with respect to topic z, and let the two regression models be:

H1 : xez,T =
L∑
l=1

alxez,t−l +
L∑
l=1

blxcz,t−l + ε1

H0 : xez,T =
L∑
l=1

alxez,t−l + ε2

(5.1)

where L is the maximal time lag, al and bl are the regression variable co-

efficients, and ε1 and ε2 are the residual terms, which are independent and

identically distributed (i.i.d) according to a standard Gaussian N (0, σ2). If

H1 is a significantly better model than H0 (i.e., provides more precise pre-
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dictions), we conclude that Xcz Granger-causes Xez; notationally c
G−→z e.

Among other techniques, the significance level can be tested using the F

statistic by the Granger-Sargent test [42], defined as follows:

F =
(rssε2 − rssε1)/L
(rssε1)/(T− 2L)

∼ F (L,T− 2L) (5.2)

where rssε2 is the restricted residual sum of squares under H0, rssε1 is the

unrestricted residual sum of squares under H1, T is the number of time steps,

and F follows the F-distribution. We reject the null hypothesis that c does

not Granger-cause e if the above calculated F is greater than the critical

value of the F-distribution for some desired false-rejection probability, e.g.,

0.05.

Based on Granger causality between all users for all topics, i.e., c
G−→z

e;∀e, c ∈ U,∀z ∈ Z, it is possible to find causal dependency between pairs of

users in order to identify influencers. The set of influencers for a user form

its influence network.

5.1.3 User Future Interest Prediction

We use the estimated vector autoregression (VAR) model to do one-step-

ahead prediction of users’ topics of interest at time step T+1, although can

be generalized to make predictions for any time period after T. Given a user e

and a topic z, we build a VAR model whose variables are e’s topic preference

time series and her influencer network, identified by Granger causality, up to
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time step t = T. Formally,

Yz,T+1 = b+
L∑
l=1

AlYz,t−l+1 + ε (5.3)

where Yz,t is a vector whose first element is equal to e’s degree of interest

toward topic z at time step t; notationally Y
(1)
ez,t = xez,t. The other elements

belong to e’s influencers such as c, i.e., Y
(i)
z,t = xcz,t; i > 1. Here, b is a vector

of constants (intercepts), Al is a time-invariant matrix of coefficients and ε

is a vector of error terms. After model estimation (training) to learn b, Al

and ε, the predicted degree of interest for user e towards topic z at time step

T+1, denoted as x̂ez,T+1, will be Y
(1)
z,T+1.

Overall, |U|×(|Z|×|U|+ |Z|); |U| >> |Z|, VAR models should be trained

for pairwise Granger causality tests and one-time-step-ahead predictions.

While the time complexity of our method is a quadratic function of the

number of users, its parallel implementation is able to reduce the complexity

to linear complexity, with |U| users in parallel with each other.

5.1.4 User Community Detection in the Future

The main goal is to predict the user communities whose user members

share similar temporal expositions toward similar topics of interest at fu-

ture time step T+1. To do so, we build a weighted undirected graph G =

(U,E, w) whose nodes are users and edges are weighted by function w based

on the topical similarity between two users at time interval T+1. Based
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on our G-regression method, this depends only on the predicted degree

of interest for the users towards topics at time step T+1. Given x̂ez,T+1,

the predicted degree of interest for user e towards topic z at time step

T+1, we build a predicted user-topic contribution vector at time T+1 as

X̂e,T+1 = (x̂ez1,T+1, x̂ez2,T+1, ..., x̂ezK,T+1) where zi ∈ Z and 1 ≤ i ≤ K = |Z|

and the weight function w is defined to be the dot-product, or angle, be-

tween e and c’s predicted user-topic contribution vector at time T+1, i.e.,

w(e, c) = X̂e,T+1X̂
ᵀ

c,T+1.

It is possible to employ a graph partitioning heuristic to extract clusters

of users that form latent communities. We leverage the Louvain Method

(LM) [15] as in Section 3.3.3 and Section 4.5. As a result of the application

of LM, a set of subgraphs such as G[C] are induced where the edges in each

subgraph have both ends in the same subgraph. The collection of these

subgraphs form the set of user communities in future time interval T+1.

5.2 Temporal Latent Space Modeling

The proposed G-regression method requires building predictive models on a

per-user per-topic basis and, hence, is practically prohibitive. Alternatively,

in this section, we propose temporal latent space modeling to predict content-

based user communities in the future where only one model is trained for all

users and computational cost is significantly reduced. Plus, it exhibits a

stronger predictive power compared to the proposed G-regression method.
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Latent space modeling [95] has been successfully employed for link pre-

diction in graphs where, given the observed links in the graph, the location

of each node in a latent space is learned such that the closer two nodes

are in that space, the higher the probability of a link between them would

be. In other words, similarity in latent space translates into links in graph

space. Latent space modeling inherently preserves homophily where links

between nodes are considered clues for similarity and, so, densely connected

groups of nodes imply communities. Different approaches based on matrix

factorization and deep neural networks [112, 111, 114] have been proposed

to learn the latent space representation of the network structure. However,

these studies are concerned with static graphs, where the latent representa-

tions of the users are fixed. Such works undermine the fact that the latent

space needs to evolve over time and, hence, fall short when identifying user

communities of the future.

Temporal tensor-factorization approaches [34], or temporal latent space

models [120], however, go beyond static networks and assume that the net-

work is dynamic and changes with time. Such models endeavor to learn low-

rank latent space representations for dynamic link prediction based on the

intuition that nodes can move in the latent space over time. While suitable

for predicting links in a social network structure, dynamic link prediction

models are inherently deficient when the communities need to take users’

content similarity into account, i.e., identify content-based user communities

in the future which is the main goal of this chapter.
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Our approach consists of three subsequent phases: temporal graph iden-

tification, temporal latent space inference, and community prediction in the

future. In the following, we lay out the details of each step.

5.2.1 Temporal Graph Identification

Given a set of topics Z from a social network within T time intervals extracted

by a topic detection method and a set of users U, we build the user-topic

contribution time series of user u ∈ U towards topic set Z within time period

T as Xu = (xu,1, xu,2, ...,xu,T) according to Section 3.3.1.

We let temporal graph Gt = (U,Et, w) represent the content-based sim-

ilarity between the users of the social network whose nodes are users in U

and let Et be the set of weighted undirected edges whose weights are based

on a similarity function w, which is defined as the cosine similarity of topic

preference vectors of the users at time interval t, i.e., ∀u, v ∈ U : w(u, v :

t) = xu,t·xv,t

|xu,t||xv,t| .

Given (G1, G2, ..., GT), we aim to accurately predict a set of induced

subgraphs in GT+1 to form content-based user communities at time interval

T+1. The following proposed method can be generalized to make predictions

for any time period after T though.
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5.2.2 Temporal Latent Space Inference

Within time period T, the stream of graphs (G1, G2, ..., GT) could be consid-

ered as a dynamic graph G which is evolving over time. We map each user u

at time interval t to a low-rank d-dimensional latent space, denoted by yu,t,

while imposing the following assumptions: i) users change their latent rep-

resentations over time, ii) two users that are close to each other in G remain

close in latent space, iii) two users who are close in latent space share similar

topics of interest with each other.

Formally, given a dynamic network G , we find a d-dimensional latent

space representation for ∀u ∈ U for time interval 1 ≤ t ≤ T that minimizes

the quadratic loss with temporal regularization:

arg min
[ T∑
t=1

∑
u,v∈U

|w(u, v : t)− yuty
>
vt|2F

+ λ
T∑
t=1

∑
u∈U

(1− yuty
>
u(t−1))

]
∀u ∈ U; yut ≥ 0,yuty

>
ut = 1

(5.4)

where w(u, v : t) is the similarity score for a pair of users u and v in Gt,

yut is the d-dimensional latent representation for u at time interval t, λ is a

regularization parameter, and the term (1−yuty
>
u(t−1)) penalizes user u for an

immediate large change in its location in latent space. Our model maps each

user to a point in a unit hypersphere rather than simplex, because sphere

modeling gives a clearer boundary between similar users and dissimilar users
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when mapping all user pairs into the latent space.

Optimizing Eq. 5.4 is expensive in terms of both time complexity and

storage as it requires all graphs in G to jointly update all temporal latent

representations for users in all time intervals. To optimize Eq. 5.4, we use

the local block coordinate gradient descent (bc-gd) algorithm [120], in which

inference happens sequentially. Specifically, we optimize users’ latent repre-

sentation locally by minimizing the following objective function at each time

interval t:

arg min
∑
u,v∈U

(w(u, v : t)− yuty
>
vt)

2 +
∑
u∈U

(1− yuty
>
u(t−1)) (5.5)

The local bc-gd algorithm infers users’ latent representation from a single

graph snapshot Gt and prior initialization from yu(t−1). The algorithm iter-

atively updates yut until it converges and then moves to the computation of

temporal latent space in the next time interval t + 1. This local sequential

update schema greatly reduces the computational cost in practice.

5.2.3 User Community Detection in the Future

The main goal of our work is to predict the user communities whose user

members share similar temporal expositions toward similar topics of interest

in the future graph GT+1. To do so, we first need to estimate the future graph

GT+1. Based on our model, the topical similarity between two users depends

only on their latent representations. In other words, the more two latent
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representations for a pair of users are close, the more similar the users are in

terms of topics of interest. As a result, given ∀u, v ∈ U : yu(T+1) and yv(T+1),

we are able to predict future graph GT+1 = (U,ET+1, w) assuming w(u, v :

T + 1) = yu(T+1)y
>
v(T+1). However, yu(T+1) and yv(T+1) are not available and

have to be approximated based on temporal latent representations up until

time interval T. We assume a user’s latent representation at time T to be

the proxy of her latent representation at time T+1, as suggested by Zhu et

al. [120], i.e.,

yu(T+1) ' yuT (5.6)

w(u, v : T + 1) = yuTy>vT (5.7)

where yuT encapsulates the latent representations of all graph snapshots from

1 up until T-1.

Now, given GT+1, we employ a graph partitioning heuristic to extract

clusters of users that form our final user communities in the future. We

leverage the Louvain method as it is a linear heuristic for the problem of

graph partitioning based on modularity optimization. Louvain can be applied

to weighted graphs, does not require a priori knowledge about the number

of communities, and is computationally efficient on large graphs [91]. The

application of Louvain on GT+1 produces a set of induced subgraphs such as

GT+1[C] whose vertex set C ⊂ U and edge set consists of all of the edges in

ET+1 that have both endpoints in C. Subgraphs with |C| ≥ 2 form instances
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of user communities.

5.3 Summary

In this chapter, two methods, namely Granger regression (G-regression) and

temporal latent space modeling, have been proposed to address RQ4, i.e.,

whether it is possible to predict future-yet-unobserved content-based com-

munities on social networks. Specifically, given a sequence of users’ contri-

butions towards a set of topics from time interval 1 to T, the objective is to

predict topical user communities in a future time interval T + 1. While the

G-regression method exhibits promising user communities in the future, its

running complexity is intractable in practice. Temporal latent space model-

ing, however, is not only computationally efficient but also could outperform

the G-regression method.
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Chapter 6

Evaluation

In this thesis, we seek to answer four research questions that would provide

insight into the role of temporal analysis on the quality of the identified user

communities in online social networks. The four research questions (RQ)

have been formulated as follows:

• RQ1. Does the consideration of temporal evolution of users’ topics of

interest lead to higher quality communities compared to when time is

overlooked?

• RQ2. Do temporal content-based methods lead to higher quality com-

munities compared to link-based methods?

• RQ3. Do temporal content-based and link-based methods have syner-

gistic impact on each other and reinforce the quality of the identified

communities when applied in tandem?
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• RQ4. Is it possible to predict future-yet-unobserved content-based

communities on social networks?

As such, four approaches have been proposed to address the proposed

research questions:

• Detecting user communities based on users’ temporal social content

using multivariate time series analysis to address RQ1 and RQ2;

• Detecting user communities based on users’ social network structure

and temporal social content using neural embedding to address RQ1,

RQ2, and RQ3;

• Predicting user communities in future yet-to-be-observed time intervals

using Granger regression method to address RQ4; and

• Predicting user communities in future yet-to-be-observed time intervals

using temporal latent space modeling to address RQ4.

In this chapter, we describe our experiments to evaluate the proposed

approaches in terms of the dataset, experimental setup, evaluation method-

ology, gold standard, and metrics.

6.1 Dataset

The testbed to evaluate the proposed approaches includes a publicly available

Twitter dataset. The dataset is collected and published by Abel et al. [2].
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It consists of approximately 3 milion tweets in English posted by 135,731

unique users between November 1 and December 31, 2010. In addition to

its text, each tweet includes a user id and a timestamp. Additionally, we

collected the followership networks of the users using the Twitter API. The

whole two-month time period is sampled on a daily basis, i.e., T = 61 days.

Figure 6.1 depicts the overall and temporal distributions of different types of

tweets and Figure 6.2 depicts the number of tweets per user in this dataset.

Twitter suffers from participation inequality, where a minority of users usu-

ally contribute the most while the others just free-ride. The statistics show

that only 15% of the users contribute more than 16 tweets within the whole

two-month period. There are 1% of users who actively participate by posting

at least a tweet. There are also other datasets available for user community

detection evaluation such as the ones released by Liang et al. [64] and Yang

et al. [110]. However, they include no tweets but the ids due to the Twit-

ter’s Developer Policy. Indeed, the actual textual body of tweets should be

retrieved from Twitter API which is costly in terms of time.

6.2 Finding Topics of Interest (Z)

Topic detection is the initial step to all proposed methods in this thesis.

Applying topic modeling methods such as LDA or ToT to extract topics from

tweets suffers from the sparsity problem [84, 97, 21] because they are designed

for regular documents and not short, noisy and informal texts like tweets.
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Figure 6.1: Temporal distribution of different types of tweet from November
till end of December 2010 in Abel et al. [2]’s dataset .

Figure 6.2: The user distribution by the number of tweets from November
till end of December 2010 in Abel et al. [2]’s dataset.

As suggested in [97, 37, 98], to obtain better topics from Twitter without

modifying the standard topic detection methods, we annotate each tweet with

concepts defined in Wikipedia using an existing semantic annotator. We see

each concept as a term in the set W. For instance, for a tweet such as ‘NATO

Leaders Seek Time on Afghan Exit Strategy - http://nyti.ms/cMMDuR’, a

semantic annotator such as TAGME [37] is able to identify and extract several

Wikipedia entities, namely ‘NATO’1, ‘Afghanistan’, and ‘Exit Strategy’.

1en.wikipedia.org/wiki/NATO
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Using entities instead of words can lead to the reduction of noisy content

within the topic detection process, because each entity implicitly represents

a collection of topical terms which are collectively more meaningful than a

single word or a group of less coherent words [81]. We annotated the text of

each tweet with Wikipedia entities using the TAGME RESTful API2, which

resulted in 350,731 unique entities.

In order to find topics Z in our dataset, we apply topic detection methods,

described in Section 3.2, on the set of concepts extracted from the tweets. The

graph-based approach for topic detection (GbT) identifies topics by group-

ing a set of concepts that exhibit similar co-occurrence patterns over time.

Given that our Twitter dataset consists of tweets from a two-month period,

we compute the pairwise similarities between daily (L=61 days) concept sig-

nals. Due to the large number of identified concepts (350K), it is expensive

to measure pairwise similarity through cross-correlation between all pairs of

concepts. However, a large number of signals are trivial and not informa-

tive. We screen out the trivial concepts as suggested in [36, 104]. Filtering

the trivial concepts significantly reduces the number of signals down to 782

and makes the computation of concept similarities practically feasible. The

remaining concepts are then clustered using the Louvain Method to form

topics. We were able to find K=47 topics, which served as our topic set

ZGbT.

We also use LDA and ToT to discover topics. LDA-based approaches to

2services.d4science.org/web/tagme/documentation
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topic detection need a priori knowledge of the number of topics, contrary to

GbT. Therefore, we have opted to select the topic set size for LDA and ToT

based on the number of topics detected by GbT. We aggregate daily tweets

of each user to form a single document. Then, we apply LDA and ToT on

the constructed documents to find topics, ZLDA and ZToT, respectively. We

have used MALLET3 for LDA and an open-source implementation available

on GitHub4 for ToT.

Given the three extracted topic sets ZGbT, ZLDA, and ZToT, we are in-

terested in determining whether or not our temporal approaches can provide

a more accurate representation of user communities compared to the non-

temporal and the state-of-the-art temporal approaches. It should be noted

that the main goal of our experiments is to determine the role and impact

of temporality when building user communities. Therefore, we intentionally

keep the parameters for topic detection methods constant (e.g. the number

of topics in LDA and ToT) so as to avoid any unintended effects on the

results and keep the scope of the experiments unchanged.

6.3 User Community Detection Evaluation

Contrary to small real-world social networks or synthetic ones, true gold

standard user communities are not available in most cases for real world ap-

plications [19]. As such, well-defined quality measures such as Rand index,

3http://mallet.cs.umass.edu/topics.php
4http://github.com/ahmaurya/topics over time
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Jaccard index, or normalized mutual information (NMI) that require com-

parison to the gold standard cannot be used for evaluation. On the other

hand and in the absence of a gold standard, quality functions such as mod-

ularity [40] are not helpful either since they are based on the explicit links

between the users (structural). In our approach and the baselines, the links

between the users are inferred through a learning process and are not always

explicit. For instance, a near perfect method may result in a low modularity

because graph edges are sparse and do not form densely connected user sets.

Conversely, a weak method may connect topically dissimilar users together

forming communities of users that do not share similar interests but result in

a high modularity. So, the communities that achieve high structural quality

in an inferred similarity graph are not necessarily optimal [72].

Fortunately, the performance of community detection methods can be

measured through observations made at the application level, as suggested

in [19, 72]. In these evaluation strategies, a user community detection method

is considered to have better quality iff its output communities improve an

underlying application such as retweet prediction [117], timestamp predic-

tion [101], news recommendation [2] and user prediction. We deploy news

recommendation and user prediction. By using these applications, we explore

whether and which community detection method is able to provide stronger

performance compared to the other state of the art community detection

techniques and hence systematically answer the four research questions.

To this end, we curate a gold standard dataset, which consists of the set
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of news articles that have been mentioned in the users’ tweets. The reason

we collect such a gold standard is because it can be safely assumed that users

would only post links to news articles if they are interested in the topic of

that news. Given our work is based on entity mentions in tweets, we also

semantically annotate the news articles that have been collected in the gold

standard dataset. Each entry in the gold standard can be viewed as a triple

(u, a, t), which refers to user u posting article a at time interval t. Formally,

the gold standard is defined as G = {(u, a, t) : u ∈ U, a ∈ D, 1 ≤ t ≤ T = 61}

where U and A are the set of users and news articles, respectively. In our

experiments, the gold standard consisted of 25,756 triples derived from 3,468

articles shared by 1,922 users. To avoid leakage, tweets which include a URL

in the gold standard have been removed from the training set. It is worth

noting that almost half of the tweets in our dataset include at least one URL,

precisely 1,437,713 out of 2,948,742 tweets with 787,680 unique URLs, among

which we could only crawl 3,468 news articles to build the gold standard.

This leads to removing 13,742 tweets and left 2,935,000 tweets for training

purposes.

6.3.1 News Recommendation

Our first set of experiments rely on the assumption that an accurate clus-

tering of users into communities would place those users who have similar

topical interest evolution over time next to each other in the same community.

As such, recommending news articles to the users of the same community
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should be possible and effective due to the similarity between user interests.

Based on the gold standard, an effective recommendation for a user would

be one that has been observed as one of the triples (u, a, t) ∈ G. In order to

make recommendations based on the identified communities, we perform the

following two steps:

1. We consider each identified community separately in every time inter-

val t (1 ≤ t ≤ T = 61) and compute the selected community’s overall

topic of interest at that time. The overall topics of interest for a com-

munity are calculated by using the sum of topic preference time series

of all users in that community. More formally, they are computed as∑
u∈C xuz,t. All news articles in the gold standard are ranked descend-

ingly based on their cosine similarity to the overall topic of interest for

the community in each time interval.

2. Each user member of a community is recommended the ranked list of

news articles that are assigned to the community.

The news recommendation application will perform best when the users

that are placed within the same community exhibit the same temporal topical

interests and hence are interested in similar news articles at each time inter-

val; therefore, it is a suitable extrinsic evaluation method to measure how

well the community detection method has been able to effectively partition

users into different communities based on their temporal interests.

Metrics. We evaluate the ranked list of news articles for recommen-
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dation by standard information retrieval metrics: Precision at rank k (Pk),

Mean Reciprocal Rank (MRR), and Success at rank k (Sk). Pk is the pro-

portion of relevant news articles in the top-k recommended items:

Pk =
1

|U|
∑
u∈U

tpu
k

(6.1)

where tpu (true positive) is the number of relevant news articles for user u

in her top-k rank list of recommendations. MRR is the inverse of the first

position that a correct item occurs within the ranked list,

MRR =
1

|U|
∑
u∈U

1

ranku
(6.2)

where ranku refers to the rank position of the first relevant news article for

the user u. Sk shows the probability that at least one correct item occurs

within the top-k items of the ranked list:

Sk =
1

|U|
∑
u∈U

(ranku ≤ k) (6.3)

In case k = 1, S1 would be equal to P1.

6.3.2 User Prediction

We perform a second set of experiments based on the user prediction appli-

cation. Given the gold standard G and the user communities P, this time the
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goal is to predict which users posted a news article a at time interval t. To

do so, we find the closest community to the news article in terms of topics of

interest at time interval t. This is done based on the cosine similarity of the

community’s overall topics of interest at time t and news article a. Then,

the members of the community would constitute the predicted users. The

logic behind why this approach helps us qualify the output communities of

the different approaches is the same as the news recommender application.

However, while the performance of the news application is evaluated based

on information retrieval metrics, the user prediction application is evaluated

based on classification metrics.

Metrics. We adopt three standard classification metrics, i.e., Precision,

Recall, and F-measure, to report user prediction performance. Precision is

the probability that a predicted poster of a news article is the actual poster

of the article:

Precision =
tp

(tp+ fp)
(6.4)

where tp is the true positive count, i.e., the number of users correctly assigned

to the news article and fp is the false positive count, i.e., the number of users

assigned incorrectly. Recall, or hit rate, is the probability that a true poster

of a news article has been correctly assigned to the posted news article:

Recall =
tp

(tp+ fn)
(6.5)

where fn is the false negative count, i.e., the number of actual posters that
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have not been assigned to their posted news articles. F-measure is the har-

monic mean of Recall and Precision and is defined as:

F-measure = 2× Precision× Recall

Precision + Recall
(6.6)

6.3.3 Baselines

In our work and in order to answer research questions RQ1, RQ2, and RQ3

with respect to the user community detection, we systematically compare

the following baseline methods. For all comparisons, the paired statistical

significance has been carried out using Student’s t-test at the 5% significance

level, unless otherwise explicitly stated.

6.3.3.1 CD

This is a non-temporal content-based community detection baseline. We

build non-temporal content-based communities over the set of users. We

project daily user-topic contribution time series of each user to the topic

space by aggregating the values over the whole time period. Then, we calcu-

late the topic-based similarity of users based on the cosine similarity of their

corresponding topic vectors. Finally, we create a weighted graph over the

users and their pairwise similarity and apply Louvain in Pajek5 to find com-

munities. Pajek is a social network analysis software that facilitates quanti-

tative or qualitative analysis of social networks through either numerical or

5vlado.fmf.uni-lj.si/pub/networks/Pajek/
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visual representation. Pajek’s key strengths are its impressive visualization

capabilities and its ability to handle very large networks comprising several

million vertices.

6.3.3.2 TCD-Timeseries

Proposed in Chapter 3, this is a temporal content-based approach which mod-

els users’ contributions toward the topics of interest within time through a

multivariate time series. The approach uses two dimensional cross correla-

tion to measure the similarity of a pair of users’ time series. We use the

implementation in MATLAB for calculating time series cross-correlation6.

Finally, we use Louvain in Pajek for its community detection step.

6.3.3.3 TCD-Embedding

Proposed in Chapter 4, this is a temporal content-based method based on

temporal user embeddings that does not consider the network structure pro-

posed in Section 4.2. This baseline could be considered as a variation of user

embedding interpolation in Equation 4.9 where α = 1 to filter out link-based

embeddings.

We adopt the implementation of triCluster7 [118] to find the regions of

like-mindedness in users’ topic contribution time series. The condition for

homogeneity c is set based on two alternatives: c1; the regions are considered

homogeneous if the difference of their values falls in the range [0, 0.1), and

6www.mathworks.com/help/signal/ref/xcorr2.html
7www.cs.rpi.edu/ zaki/software/TriCluster.tar.gz

111

https://www.mathworks.com/help/signal/ref/xcorr2.html
http://www.cs.rpi.edu/~zaki/software/TriCluster.tar.gz


c2; the regions are considered homogeneous if their values are greater than

the threshold 0.1 (LDA’s alpha prior). We proceed to extend the CBOW

architecture in Gensim8 to learn user vector representations. The training

phase uses a learning rate of 0.025 and in each epoch we decrease it by 0.002

for 200 epochs. The window size for the representation learning process

is set to 2. We perform the experiments on different vector sizes of d =

{100, 200, ..., 500}.

6.3.3.4 GrosToT

This is a temporal content-based generative process for topics and commu-

nities proposed by Hu et al. [50]. The number of topics is set to Z = 50 and

we perform experiments on increasing numbers of communities for C={5,

10, ..., 30} untill we see no performance gain. The number of iterations is

set to 1,000. This method is a mixture model in which all users are mem-

bers of all communities with a probability distribution. In our comparison,

we only consider the community with the highest probability as the user’s

community.

6.3.3.5 Link-CD

This is a link-based method based on link-based user vector representations,

proposed in Section 4.3, which does not consider user content. This baseline

could be considered as a variation of user vector interpolation in Equation 4.9

8radimrehurek.com/gensim/models/word2vec.html
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where α = 0 to filter out temporal content-based embeddings.

In order to infer the user embeddings from the social network structure

G = (U,A) whose vertices are users U and edges are ordered pairs of user

elements such as (u, v) ∈ A, we use the formulation presented in Section 4.3

owing to its scalability (O(|U|)) and unsupervised representation learning

as opposed to more sophisticated neural-based graph embedding techniques

such as deep neural graph representations (DNGR) [18] and structural deep

network embeddings (SDNE) [99] with higher time complexity (O(|U|2) and

O(|U||A|), respectively). Graph convolutional networks (GCN) [56] with

running complexity of O(|A|) and its variations [108] are the state of the art

in inductive tasks, i.e., they are able to generalize previously unseen users,

which is crucial in evolving social networks. In our work, however, we assume

that the social network structure G remains stationary and, hence, employing

GCN-based methods does not add much value to our experiments.

We created 10 random walks of length l ∈ {40, 80} for each user and the

window size for the training process is set to {5, 10} while the learning rate

and the number of epoches are set to 0.002 and 200, respectively. The return

(p) and in-out (q) parameters are set to a default value 1.

6.3.3.6 TCD(α)-Embedding

Proposed in Chapter 4, this baseline interpolates temporal content-based

embeddings with the link-based ones based on Equation 4.4, proposed in

Section 4.4, where α ∈ R[0,1].
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Figure 6.3: The performance of the proposed multivariate user time series
method (TCD-Timeseries) and non-temporal community detection method
(CD) in the context of the news recommendation application using different
topic detection methods, LDA [14], ToT [101], and GbT. The ranking metrics
and their amplitude are shown in horizontal and vertical axes respectively.

6.3.4 RQ1: TCD-Timeseries vs. CD

We begin by considering research question RQ1, i.e., whether the consider-

ation of temporal evolution of users’ topics of interest lead to higher quality

communities compared to when time is overlooked. Here, we compare our

time series approach, proposed in Chapter 3, against non-temporal baseline

(CD).

Figure 6.3 summarizes the performance of the proposed time series ap-

proach against non-temporal baselines in terms of MRR, S@1 and S@10 in the

context of a news recommendation application as explained in Section 6.3.1.

As shown, the time series-based community detection (TCD-Timeseries)

method along with different topic detection methods, GbT, LDA, and ToT

outperform the non-temporal counterparts in all metrics. This means that

incorporating temporal aspects of users’ interests for extracting like-minded
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Figure 6.4: The performance of the proposed multivariate user time series
method (TCD-Timeseries) and non-temporal community detection method
(CD) in the context of the user prediction application using different topic
detection methods, LDA [14], ToT [101], and GbT. The x axis shows the
number of top communities which are selected for the task of user prediction.

communities leads to more cohesive communities that consequently results in

better news recommendations. This characteristic allows us to make recom-

mendations to users that are topically relevant and made at the appropriate

time.

We evaluate and compare the quality of user predictions made based on

the time series-based approach and non-temporal baseline. The results are

presented in Figure 6.4 for top-k; 1 ≤ k ≤ 100.

As seen, methods which use time series-based temporal community de-

tection (TCD-Timeseries) unanimously outperform the ones which use non-

temporal community detection (CD) in terms of precision and recall. This
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reinforces our hypothesis that the communities that are built using the time

series-based approach are topically and temporally coherent such that when

the user who mentions a certain news article needs to be identified at time

interval t, both the content and time of the news can be taken into con-

sideration to make more accurate predictions. On the other hand, while

non-temporal communities do consider the topic of the news article, they fail

to take time into account. This will result in many false positives when pre-

dicting the user because while a user may have had interest in a certain topic

in previous time intervals, she might have lost interest later and therefore

naturally be much less likely to post about that topic as time passes.

For instance, let us consider the three sample Twitter users again. All

users @joe, @john and @mary are interested in the ‘War in Afghanistan’ topic

(z44 in Figure 3.1) but with a one month time difference. As was observed,

@joe, @john show their interest in the topic in November whereas @mary did

so in December. Now, if a news article has been observed on Twitter talking

about ‘War in Afghanistan’ on December 17, it is very likely that @mary is

the user who is posting this news as opposed to the other two users. The

same logic applies if the same news article has been seen but on November 25.

This time the likelihood of @joe or @john posting this news is much higher.

As it turns out in our experiments, the non-temporal community detection

methods were not able to make a distinction between the three users and

would hence predict all users to be the posters in both cases.

In summary, in response to the RQ1, i.e., whether the consideration of
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Figure 6.5: The performance of the proposed multivariate user time series
method (TCD-Timeseries) using different topic detection methods, LDA [14],
ToT [101], and GbT and the state of the art (GrosToT [50]) in the context
of the news recommendation application. The ranking metrics and their
amplitude are shown in horizontal and vertical axes respectively.

time plays a role in the quality of the identified communities or not, the

comparative result shows that considering users’ temporal behaviour is an

influential contributor to the identification of high quality user communities

in the context of news recommendation and user prediction.

6.3.5 RQ1: TCD-Timeseries vs. State of the Art

To compare the time series-based approach with the state of the art, we run

GrosToT [50] on the ground truth. Figure 6.5 depicts the performance of

GrosToT as the number of communities changes compared with the time

series approach. As shown, LDA variant of TCD-Timeseries achieve com-

petitive performance compared with GrosToT but not statistically signifi-

cant where TCD-GbT and TCD-LDA show poorer performance on MRR

and S@10, respectively. The reason for this better performance by GrosToT
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Figure 6.6: The performance of the proposed multivariate user time series
method (TCD-Timeseries) using different topic detection methods, LDA [14],
ToT [101], and GbT and the state of the art (GrosToT [50]) in the context
of the user prediction application. The ranking metrics and their amplitude
are shown in x and y axes respectively.

could be the fact that the time series representation of the users suffers from

sparsity and is not able to capture both topical and temporal disposition of

users more effectively.

We have evaluated the performance of the state-of-the-art competitor,

i.e., GrosToT, in the task of user prediction as well. The results are pre-

sented in Figure 6.6 in terms of precision, recall, and f-measure. As observed,

GrosToT with different numbers of communities does not show a coherent

performance. While GrosToT with five communities (C = 5) shows better

performance in terms of recall compared with the other GrosToT variations,

GrosToT with C = 15 and C = 20 communities show higher precision. When

comparing GrosToT with the best performing variation of the proposed time

series approach, i.e., TCD-Timeseries with ToT, one can make two observa-

tions:

1. TCD-Timeseries and GrosToT(C = 5) show competitive performance
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in terms of recall. However, it should be noted that higher recall values

for GrosToT(C = 5) are expected given the fact that a lower num-

ber of communities will essentially group users in fewer clusters hence

producing higher recall. However, when looking at the precision for

GrosToT(C = 5), it can be seen that this higher recall has come at the

cost of a much lower precision compared with TCD-Timeseries.

2. In terms of precision, both TCD-Timeseries and GrosToT(C = 20)

show competitive performance. GrosToT(C = 20) performs slightly

better for top-k; k ≤ 35, whereas TCD-Timeseries shows slightly better

results for k > 35. Overall, when considering f-measure, GrosToT(C

= 20) and TCD-Timeseries show very competitive performance while

TCD-Timeseries outperforms for top-k; k > 35.

In summary, our time series approach and the state of the art (GrosToT)

in temporal user community detection show competitive performance in the

context of news recommendation and user prediction with respect to the

RQ1. While our time series approach could not outperform the state of the

art, which we attribute to sparsity in topic space in user-topic contribution

time series, our second alternative approach, i.e., user neural embedding, is

able to outperform the state of the art as shown in the next section. LDA has

been selected as the topic detection method in all the following experiments

since its use with our time series method outperforms the other variations,

i.e., using GbT and ToT as underlying topic detection methods.
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6.3.6 RQ1: TCD-Embedding vs. State of the Art

As we show in Figure 4.1, it is very unlikely that two users have the exact

same probability value for a given topic in the same time interval. As such,

we have introduced the condition of homogeneity to relax the condition for

matching users with each other in a given time interval over some topics. One

option (c1) for defining the condition of homogeneity is to allow for slight

variations between topic contributions by different users. For instance, we

could allow the difference to be in a certain range, e.g., [0, 0.1), which is the

strategy that we have adopted in the previous set of experiments reported

earlier. It is alternatively possible to define the condition of homogeneity

(c2) in a way that two values would be considered similar if they both have a

value greater than a given threshold, e.g., LDA’s alpha prior 0.1 , as shown

in Figure 4.2(a). This way, we are treating values as binary values; hence, a

pair of users with a degree of interest towards a given topic at a same time

interval are considered like-minded only if both users have a value greater

than the threshold. We have additionally performed experiments with this

alternative condition of homogeneity, denoted by the ‘-b’ suffix in the figures.

In order to explore whether the explicit embedding of time within users’

vector representations lead to higher quality communities compared to when

time is incorporated into a generative process, we compare the temporal

content-based baselines, namely GrosToT [50] and TCD-Embedding in which

only temporal user vector representations have been utilized, in Figure 6.7.

As shown, TCD-Embedding achieves better performance compared with the
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Figure 6.7: The performance of the proposed neural user embedding method
(TCD-Embedding) under two alternative conditions of homogeneity using
LDA [14] compared to the state of the art (GrosToT [50]) in the context of
the news recommendation application. The vertical axis show the amplitude
of the ranking metrics.

temporal approach proposed by Hu et al. (GrosToT) for different dimension

sizes. Specifically, the result shows that TCD-Embedding with d = 300 is

the best and GrosToT is the runner up. We attribute the better performance

of TCD-Embedding to the fact that the embedding function preserves both

topical and temporal proximity of users more effectively and, consequently,

the extracted user communities capture temporal content-based similarity of

users more coherently than the other two baselines. This demonstrates the

effectiveness of explicitly embedding time into user vector representations.

Based on the results in Figure 6.7, we conclude that the explicit embedding

of time in user vector representations leads to higher quality user communi-
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ties compared to when time is incorporated as a component in a generative

process.

Comparing the two alternative conditions of homogeneity, we observe

that c1 outperforms c2. As seen in Figure 6.7, TCD-Embedding-b is not

even able to outperform GrosToT baseline. The reason might be the fact that

considering two users who have a value more than a threshold (0.1, LDA’s

alpha prior) to be like-minded regardless of their degrees of interest has a

confounding effect on the user embeddings. That is, dissimilar users end up

with close embeddings and finally become members of the same communities.

Similar to the news recommendation task, we seek to evaluate the per-

formance of our embedding method (TCD-Embedding) vs. State of the art

(GrosToT) but in the context of the user prediction application. We sum-

marize the performance of user prediction for temporal baselines in terms

of classification metrics in Figure 6.8. As shown, TCD-Embedding outper-

forms other baselines in all metrics (except for d = 100). This reinforces the

fact that when time is explicitly embedded in the user representations that

it will lead to higher quality communities compared to representations that

incorporate time within a generative process. Contrary to the news recom-

mendation application where TCD-Embedding did not outperform GrosToT

baseline, in the user prediction application it performs better. In summary,

in user prediction, our method is able to outperform the state of the art

regardless of the condition of homogeneity.
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Figure 6.8: The performance of the proposed neural user embedding method
(TCD-Embedding) under two alternative conditions of homogeneity using
LDA [14] compared to the state of the art (GrosToT [50]) in the context of
the user prediction application. The vertical axis show the amplitude of the
classification metrics.

6.3.7 RQ2: TCD-Embedding vs. Link-CD

In order to answer research question RQ2, i.e., whether temporal content-

based user community detection methods show better performance compared

to link-based methods, we compare the quality of the output communities

in Figure 6.9. As seen, linked-based methods (Link-CD) show their best

performance with d = 300 and a random walk length l = 80 but still perform

worse than the poorest version of TCD-Embedding with d = 100. As an

example, all the variations of Link-CD produce zero in terms of P1. This

points to the fact that link-based methods produce lower quality communities

compared to temporal content-based counterparts.
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Figure 6.9: The performance of link-based community detection baseline
(Link-CD) vs. worst case of TCD-Embedding (d = 100) in terms of ranking
metrics in the context of the news recommendation application. The verti-
cal axis shows the amplitude of the metrics. All Link-CD variations had a
performance of zero in terms of P1.

Likewise, Figure 6.10 shows that the temporal content-based user com-

munity detection methods outperform link-based methods in the user pre-

diction application. Specifically, the best link-based baseline (Link-CD with

d = 300 and random walk length l = 80) performs worse than the poor-

est version of LDA-TCD with d = 100. This reinforces our findings in the

news prediction application that link-based methods produce lower quality

communities compared to content-based baselines.

124



Figure 6.10: The performance of link-based community detection baseline
(Link-CD) vs. worst case of TCD-Embedding (d = 100) in terms of classifi-
cation metrics in the context of the user prediction application. The vertical
axis shows the amplitude of the metrics.

6.3.8 RQ3: TCD(α)-Embedding vs. TCD-Embedding

In order to answer research question RQ3, i.e., whether link-based and tem-

poral content-based community detection methods have a synergistic effect

on each other, we use TCD(α)-Embedding in which the user vector represen-

tations from temporal social content are interpolated with link-based ones.

As both types of user representation yield best results for user communities at

d = 300, i.e., TCD-Embedding (d = 300) and Link-CD (l = 80, d = 300), we

investigate the effect of social structure in temporal user community detection

only for user vector representations of size d = 300 in TCD(α)-Embedding.

Figure 6.11 shows the results for decreasing values of α in order to show
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the impact of link-based methods on improving the quality of content-based

methods. As shown, we start with α = 1 where there is no link-based user

vector representation involved and the representation is essentially equiva-

lent to TCD-Embedding. As we gradually put more weight on the link-based

user vector representation, the results improve up to an extremum, which

happens at α = 0.6. This demonstrates the fact that the link-based user

representation is helping with user community detection and identifying user

relationships that cannot be otherwise derived based solely on user content.

However, the impact of link-based user embeddings needs to be controlled

as the increase in the weight of the link-based user representation beyond

α = 0.6 leads to declining community quality.

In order to answer research question RQ3 with regards to the synergistic

impact of temporal content-based and link-based user embeddings in the

user prediction application, similar to the new prediction application, we

employ a TCD(α)-Embedding baseline with an embedding dimension size of

d = 300. Figure 6.12 shows the results for decreasing values of α. The left

corner of each diagram in Figure 6.12 represents the performance of TCD-

Embedding due to α = 1 and as such no link-based user vector representation

is involved. As seen, the gradual increase in the weight of the link-based user

representation leads to improved performance up to α = 0.5 and 0.6 for

l = 80 and l = 40, respectively. However, we observe declining performance

as α decreases untill the end when TCD(α)-Embedding becomes a pure Link-

CD method at α = 0. This demonstrates the fact that while link-based user
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Figure 6.11: The performance of user communities through linear interpola-
tion of temporal content-based and link-based user vector representations of
size d = 300 in the context of news recommendation. The vertical axis shows
the amplitude of the ranking metrics.

representations alone do not produce high quality user communities, they

can help improve the performance of content-based methods if interpolated

effectively.

6.4 RQ4: User Community Prediction Eval-

uation

Similar to user community detection, we evaluate the proposed methods

for user community prediction at the application level. In this evaluation

strategy, a community prediction method is considered better iff its output
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Figure 6.12: The quality of the identified user communities as a results of
the linear interpolation of link-based and temporal content-based user vector
representation in TCD(α)-Embedding in the context of the user prediction
application. The vertical axis shows the amplitude of the classification met-
rics.

communities in future time intervals improve an underlying application. We

deploy two applications, namely news recommendation, and user prediction.

By using these applications, we explore whether our proposed method is able

to provide stronger performance compared to the state of the art. We build

the gold standard from a set of news articles whose URLs have been posted

by user u at time T+1. We see each entry as a triple (u, a, T+1) consisting

of the news article a, user u, and the time interval T+1 to form our gold

standard.

We compare the quality of user communities predicted by our proposed

method against the baselines in the context of news recommendation and

user prediction applications.

News Recommendation. To evaluate user communities in the future in

the context of the news recommender application, we recommend news arti-
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cles in two steps:

1. For each community C, we recommend news articles in a ranked list

based on the similarity of the article a and the community’s overall topic

preference vector at time T+1. The overall topic preference vector for a

community is the sum over all users’ topic preference vectors belonging

to the community, i.e.,
∑

u∈C xu(T+1).

2. We recommend the news article a to a user u ∈ C based on the same

ranked list as her community’s list. A true community is one whose

members are interested in the same topics of interest in the future. As

a result, at time T+1, a news article is about the same topics of interest

as the community’s overall interests iff all the members post about the

same or similar news articles.

We evaluate the recommended list of news articles using standard retrieval

metrics such as MRR, nDCG@5, and nDCG@10.

User Prediction. The other application with which we evaluate our ap-

proach is the user prediction application. Here, given the user communities

of the future, the goal is to predict which users posted a news article a at

time T+1. To do so, we consider members of the closest community to a

news article in terms of topics of interest at time T+1 to be the potential

posters. We use precision (PR), recall (REC), and F-measure (F1) to report

user prediction performance.
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6.4.1 Baselines

In order to answer the last research question, RQ4, we compare the following

baseline methods from four categories of temporal user community detec-

tion (GrosToT [50] and TCD-Embedding), temporal collaborative filtering

(TimeSVD++ [57] and RRN [106]), regression (VAR and G-regression), and

temporal latent space modeling (Chimera [5] and our proposed model).

6.4.1.1 GrosToT [50]

This the same GrosToT baseline proposed by Hu et al. [50] in user community

detection but trained on users’ temporal content up until the last day but

one, i.e., T=60. The final communities are then used as an estimate for

communities on day 61.

6.4.1.2 TCD-Embedding (d=300)

This is our neural user embedding method, which is proposed to identify

temporal content-based user communities, at its best parameter settings with

embedding dimension size d=300 as shown in Section 6.3.6. We trained this

baseline on users’ temporal content up until the day before the last in our

dataset, i.e., T=60. The final communities are then used as an estimate for

communities on day 61.
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6.4.1.3 TimeSVD++ [57]

Temporal collaborative filtering methods are able to predict users’ topics

of interest in future and, hence, can be used for the task of content-based

community prediction, among which we choose TimeSVD++ as a collab-

orative filtering baseline. TimeSVD++ [57] is the temporal extension to

SVD++. The implementation in librec9 was used in our experiments. We

performed a grid search over the bin size in {1,2,4,8,16,32,64} and factors

size in {10,20,40,80} to select the best settings. Other settings were left to a

default value, i.e., learning rate=0.01 and regularization λ = 0.1.

6.4.1.4 Recurrent Recommender Networks (RRN) [106]

This is a temporal collaborative filtering approach based on recurrent neu-

ral nets. We performed grid search over bin size in {1,2,4,8,16,32,64} and

users and topics’ dynamic states size in {10,20,40,80}. Other hyperparam-

eters were set to a default: single-layer LSTM with 40 hidden neurons and

embeddings size of 40. The implementation is kindly provided by its authors.

6.4.1.5 G-regression

Proposed in Chapter 5, this is the Granger regression method which finds

the top influencers for each user with respect to each topic up until day

T=60 using Granger causality. Then, a user’s degree of interest toward each

topic on day T+1=61 is predicted using both the user and her influencers’

9www.librec.net
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temporal content in a bivariate var model. We performed experiments on an

increasing number of influencers k ∈ {1, 2, 5, 10, 20}. To find communities

in the future, a weighted graph is formed over the users and their pairwise

similarity on predicted degrees of interest on day 61, on which Louvain is

applied.

Our users’ topic preference time series satisfy the Granger causality as-

sumption of stationarity as they passed different stationarity tests, namely

the Phillips-Perron [82], Dickey-Fuller [29] and KPSS [58]. The significance

level and the maximum number of lags were set to 0.05 and 2, respectively.

The bayesian information criterion (bic) was used to find optimal lag. We

used the first 4 values of the users’ topic preference time series as the pre-

samples to initiate the var models estimation.

6.4.1.6 Vector Autoregression (VAR)

This approach is the vector autoregression (VAR) method to predict users’

future topics of interests in a univariate var model. A user’s degree of interest

toward each topic on day T+1=61 is predicted using only the user’s temporal

content. To find communities on day 61, we took a similar approach as in

the G-regression baseline.

6.4.1.7 Temporal Latent Space Modeling

Proposed in Chapter 5, this is the temporal latent space modeling method.

We adopt the sequential (local) version of block coordinate gradient descent
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proposed in [120]. By setting the temporal smoothness (regularization)

parameter λ = 0.01, we performed experiments on increasing numbers of

dimensions d ∈ {10, 20, ..., 100} for learning temporal latent representation

of users in 1,000 iterations. We apply Louvain on the estimated user graph

at time T+1=61 using Pajek to identify user communities in the future.

6.4.1.8 Chimera [5]

To the best of our knowlegde, this baseline is the most related and recent

baseline to our proposed temporal latent space model. Appel et al. use shared

matrix factorization to embed social network dynamics and temporal con-

tent in a shared feature space followed by a traditional clustering technique,

such as k-means, to identify user communities. We performed experiments

on increasing numbers of communities for C={5, 10, 20, 30} and varying

embedding dimensions d={5, 10, 20, 30}.

6.4.2 Results

Foremost, we explored the impact of the size of the influencer network on the

predictive power of our G-regression method and then compared it to other

baselines. We evaluated the performance of G-regression for varying number

of top-influencers k ∈ {1, 2, 5, 10, 20} that were used in the influence network

using rating metrics including mean absolute error (MAE) and root-mean-

squared error (RMSE), and ranking metrics including nDCG, MAP, and

P@5. As seen in Figure 6.13, the accuracy of our approach did not show
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Figure 6.13: The performance of proposed G-regression method with varying
number of influencers (g@k) in terms of prediction error (the lower the better)
and ranking metrics (the higher the better). The vertical axis shows the
amplitude of the metrics.

statistically significant improvement or deterioration on any of the metrics

for different number of influencers (g@k). This can be due to two factors:

i) the VAR model structure which is used to incorporate the k influencers’

topic preference time series selects the top (k=1) influencer’s topic preference

time series as its salient component for all baselines k > 1, and ii) the pair-

wise (bivariate) Granger causality test could potentially lead to misleading

influencers as mentioned by Ding et al. [70] for cases when more than one

causes are considered. For instance, let c, m, and e be three users where

c
G−→z m and m

G−→z e. Pairwise Granger analysis would yield c
G−→z e and

not be able to distinguish whether the causality between e and c is direct

or mediated by m. As such, we conclude that only considering each user’s

top influencer is sufficient to accurately predict the user’s future interests;

therefore, without loss of generality, we compare our proposed approach with

the baselines based on g@1.
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Figure 6.14: The impact of dimension size on the proposed temporal latent
space modeling method in the context of news recommendation application.
The vertical axis shows the amplitude of the ranking metrics.

Next, we analyze the effect of dimension d in our temporal latent space

inference algorithm. We vary d from 10 to 100 and report the performance

in Figure 6.14. As seen, the overall trend indicates that the recommenda-

tion performance in terms of all ranking metrics increases with number of

dimensions up to an extremum at d = 70.

We compared our proposed G-regression and temporal latent space method

at its best setting (d=70) against the baselines at their best settings in Ta-

ble 6.1. As shown, our proposed temporal latent space method outperforms

other baselines in terms of all ranking metrics in the context of news recom-

mendation. We attribute the accuracy of the temporal latent space modeling

approach to the fact that it directly models and leverages the impact of users’

pairwise similarity over their topics of interest within the time dimension, i.e.,

sequence of similarity graphs, which has been overlooked in all of the other

baselines. G-regression is a predictive model based on inter-user topical in-
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fluence within the time dimension and was able to be the next in terms of

MRR. GrosToT, which is neither a predictive model nor aware of temporal

similarity among users, however, had inefficient performance. It is worth

noting that due to capturing sequences of inter-user similarities indirectly

through collaborative filtering, RRN was able to become the runner-up in

terms of nDCG@5 and nDCG@10. It is worth noting that the underlying

news recommendation system we used for the evaluation might not be capa-

ble of being useful in practice as the results are very low due to the applied

naive recommendation algorithm. However, the main goal herein is not to

propose a state of the art method for news recommendation but to show the

performance gain of the proposed methods compared to the baselines given

an existing recommendation system.

The other application with which we evaluate our approach is the user

prediction application. We use precision (PR), recall (REC), and f-measure

(F1) to report user prediction performance. We further compare our method

at its best which happens to be at d=80, against the baselines at their

best setting in Table 6.1. In terms of precision, our proposed methods, G-

regression and temporal latent space modeling, were able to outperform other

baselines. In terms of recall ; however, the baselines could achieve higher per-

formance and our methods were not as strong. The reason for such high recall

for the baselines is the fact that the baseline methods cluster users into very

few, yet large user communities, as seen in Figure 6.15. For instance, RRN

was able to excel in recall due to its low number of communities. In an
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Table 6.1: The performance comparison of the proposed G-regression and
temporal latent space modeling vs. the state-of-the-art baselines for commu-
nity prediction in the context of news recommendation and user prediction
applications in terms of ranking and classification metrics respectively.

News Recommendation User Prediction
MRR nDCG@5 nDCG@10 PR REC F1

Temporal Latent Space Modeling 0.2254 0.1080 0.1050 0.0123 0.0352 0.0148
Chimera (C=20, d=30) [5] 0.1760 0.0558 0.0545 0.0065 0.0938 0.0105
GrosToT(C=20) [50] 0.1733 0.0560 0.0490 0.0070 0.1358 0.0130
TCD-Embedding (d=300) 0.0652 0.0400 0.0400 0.0070 0.1364 0.0132
VAR 0.1540 0.0480 0.0490 0.0012 0.1481 0.0025
G-regression 0.1816 0.0480 0.0490 0.0087 0.4423 0.0169
RRN [106] 0.1732 0.0731 0.0795 0.0040 0.7407 0.0079
TimeSVD++ [57] 0.1412 0.0577 0.0641 0.0026 0.6574 0.0052

extreme, if a method only identifies one community that includes all of the

users, recall would be 1. As such the lower the number of the communities

is, the higher the recall would be. However, this comes at the cost of pre-

cision. Overall, the f-measure metric points to higher quality communities

identified based on our proposed work. This reinforces the fact that when

users’ pairwise similarity with respect to the topics of interest over time are

explicitly embedded in a sequence of graphs, it will lead to higher quality user

communities in the future. Further, Figure 6.15 shows that unlike some of

the baselines where the majority of the users are placed in few communities

and the other communities only have a few members, our approaches have

been able to proportionally distribute users across different communities.
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Figure 6.15: User distribution in communities. Our temporal latent space
method leads to a higher number of communities with a proportional distri-
bution of users in the communities while the baseline methods like RRN have
a higher skewness. Disproportionate distribution of users in communities can
lead to poor application-level performance.

6.5 Summary

6.5.1 Findings

Based on our experiments on the news recommendation and user predic-

tion tasks, we can summarize our findings with regards to the four research

questions as follows:

1. We find that the consideration of temporal evolution of user-generated

content is key in finding effective user communities. Our observations

show that the incorporation of time in the user representations leads

to higher quality user communities compared to when time is not con-

sidered.

2. Further, we find that the neural embedding of time into the user repre-

sentation leads to higher quality communities compared to when time

138



is included as a part of a generative process.

3. We observed that the communities identified through link-based meth-

ods are poorer compared to when temporal content-based methods are

employed.

4. We find that while link-based methods show poorer performance com-

pared to temporal content-based methods, they can still have syner-

gistic impact on the performance of temporal content-based methods.

In other words, the interpolation of link-based and temporal content-

based methods lead to higher quality user communities.

5. Finally, we find that it is possible to predict future-yet-unobserved

content-based communities on social networks through proposed tem-

poral latent space modeling.

In summary, we conclude that when embeddings learnt based on tem-

poral content-based methods are interpolated with the embeddings learnt

from link-based community detection methods, they result in the highest

quality communities as shown within the context of news recommendation

and user prediction tasks. The findings have been evaluated from both the

perspective of information retrieval and classification metrics. With respect

to community prediciton task, our work is among the first to explore the idea

of predicting topical user communities on social networks. Our experiments

show that our temporal latent space approach is able to predict communities
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of like-minded users with respect to topics of interest in future yet-to-be-

observed time interval and outperform the state of the art.

6.6 Related Publications

• Hossein Fani, Masoud Bashari, Fattane Zarrinkalam, Ebrahim Bagheri

and Feras Al-Obeidat; “Stopword Detection for Streaming Content.”

Advances in Information Retrieval - 40th European Conference on IR

Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceed-

ings.
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Chapter 7

Conclusions

This chapter concludes the thesis and provides an outlook on future work.

First, a summary is presented and concluding remarks are made for the

thesis. Next, open research problems for future work are described.

7.1 Concluding Remarks

Identifying and extracting user communities is an important step towards

understanding social network dynamics from a macro perspective. For this

reason, the work in this thesis explored various aspects related to the iden-

tification of user communities.

This thesis first proposed two approaches to detect communities of like-

minded users who share topics of interest with similar temporal behaviour.

Then, it put forward two approaches to predict the same type of user com-
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munities but in a future yet-to-be-observed time interval. In the following, a

number of findings that can be concluded from the work done in this thesis

are summarized.

• To date, user community detection methods employ either explicit links

between users (link analysis), or users’ topics of interest in posted con-

tent (content analysis), or in tandem. Little work has considered tem-

poral evolution when identifying user communities in a way to group

together those users who share not only similar topical interests but

also similar temporal behaviour towards their topics of interest. In this

thesis, we identified user communities through two alternative repre-

sentations for users. First, we modeled the contribution of each user

towards topics using multivariate time series and applied 2-dimensional

cross-correlation on all pairs of such time series to find similar users in

topics of interest and temporal behaviour. We employed the Louvain

clustering, a heuristic graph partitioning algorithm based on modular-

ity optimization, to create our final user communities. To find topics

from the social network, we used state-of-the-art topic detection meth-

ods with different approaches, as alternatives, in order to show that

our approach and its contribution were independent of topic detection

algorithms. We used one graph-based and two probabilistic LDA and

ToT methods. We examined our approach on two application scenarios:

news recommendation and user prediction. According to our results,

our temporal topic-based community detection method based on multi-

142



variate user time series was able to effectively identify user communities

that were formed around temporally similar behaviour towards shared

topics and show competitive performance compared to the state of the

art. However, this method suffered from sparsity in multivariate user

time series. Further, it was not possible to seamlessly augment so-

cial links as an additional information source. As such, we proposed a

neural embeddings method to model users based on their temporal con-

tent similarity. Inspired by Mikolov et al.’s word2vec [69] in computa-

tional linguistics, while we followed the same underlying premise about

temporality in like-minded user community detection, we introduced a

time-aware topic-driven distributional representation (embeddings) of

users. We applied cosine similarity on all pairs of user embeddings to

find topically and temporally similar users. We employed the Louvain

clustering to create our final user communities. This approach not only

was able to outperform the state of the art by addressing the sparsity

problem, but was also able to support social links as well. In summary,

we found that (1) methods that consider temporal evolution of content,

our proposed methods in particular, showed better performance com-

pared to their non-temporal counter-parts; (2) content-based methods

produced higher quality communities compared to link-based methods.

• Futher, we learnt user embeddings based on their social network con-

nections (links) through neural graph embeddings. We systematically

interpolated temporal content-based embeddings and social link-based
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embeddings to capture both social network connections and temporal

content evolution for representing users. We evaluated the quality of

each embedding type in isolation and also when interpolated together

and demonstrated their performance on a same testbed, i.e., under the

two application scenarios, namely news recommendation and user pre-

diction. We found that (3) while link-based methods are weaker than

content-based methods, their interpolation with content-based meth-

ods leads to improved quality of the identified communities.

• Performing community prediction in the future can be quite challeng-

ing, especially on social networks such as Twitter, due to the rapid

changes in community topics and evolution of user interactions. In this

context, temporal collaborative filtering methods, which benefit from

similar user behavioural patterns over time to predict how a user’s in-

terests might evolve in the future, can be employed to perform user

community prediction. In this thesis, we proposed that instead of con-

sidering the whole user base within a collaborative filtering framework,

it is possible to much more accurately predict such user communities by

only considering the behavioural patterns of the most influential user

related to the user of interest. We modeled influence as a form of causal

dependency between users. To this end, we employed the concept of

Granger causality to identify causal dependencies. While our exper-

iments showed that the consideration of only one causally dependent

user leads to much more accurate prediction of users’ future interests,
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the running time complexity was prohibitive. Therefore, we proposed

a temporal latent space model for user community prediction in social

networks, whose goal was to predict future emerging user communities

based on past history of users topics of interest. Our model assumed

that each user lies within an unobserved latent space, and similar users

in the latent space representation are more likely to be members of

the same user community. The model allowed each user to adjust its

location in the latent space as her topics of interest evolve over time.

We found that (4) this method not only is computationally tractable,

but also outperforms existing approaches.

7.2 Future Work

In this section, open research problems for future work are described.

7.2.1 User Community Detection

The work presented in this thesis for detecting diachronically like-minded

user communities can be improved from a number of aspects with additional

research. In the following, some of these aspects are discussed and directions

for future research are provided:

• In all our experiments, the time period was broken into daily intervals.

This was a fair choice for our dataset because it consists of tweets from

a two-month period. It would be, however, interesting to study the
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effect of other time interval spans, e.g., weekly vs monthly, in order to

construct the user-topic contribution time series for the user represen-

tation. Possible future directions of our work would be exploring the

impact of time interval size on the quality of the derived communities

and additionally finding ways in which the optimal time interval length

can be learnt through hyper-parameter search techniques.

• We used news recommendation and user prediction applications to eval-

uate the proposed methods. However, other application scenarios have

been proposed for extrinsic evaluation when there is no labeled dataset

such as retweet prediction [117] or timestamp prediction [101]. Ex-

amining the performance of the proposed methods in such underlying

applications would be a potential future direction.

• To produce the output user communities, we employed the Louvain

clustering method, which was an effective and efficient partitioning clus-

tering method. It would be interesting to extend our approach beyond

disjoint user communities and study overlapping user communities by

using overlapping clustering techniques.

• In our multimodal neural user embedding approach, we interpolated

temporal content and social network structure at the user vector rep-

resentation level for the task of temporal user community detection to

explore the synergy between social links and temporal contents. This

inherently limited the vectors for both types of representation to have
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the same embedding size. One possible future direction would be to

explore temporal content-based and link-based user vectors at the score

level, i.e., the final similarity scores of temporal content-based user vec-

tor representations could be interpolated with the similarity scores of

link-based user vectors. This way, the embedding size of the informa-

tion sources becomes irrelevant.

• We interpolated temporal content-based and link-based user vector rep-

resentations through a weighted linear function in order to system-

atically investigate the synergy between links and temporal content.

Another direction for our future research is to learn the embedding in-

terpolation function through joint representation instead. Hence, the

synergy effect would not be limited to linear functions and might lead

to a greater impact.

7.2.2 User Community Prediction

Our work is among the first to explore the idea of predicting topical user

communities on social networks. Our work has limitations in both proposed

methods, namely Granger regression and temporal latent space modeling,

though. In the following some of these limitations are discussed and direc-

tions for future research are provided:

• Communities encounter various evolution stages such as birth, death,

growth, shrinking, splitting and/or merging. In other words, two com-
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munities combine into a bigger community or another community may

be divided into several smaller communities. However, in this thesis

we disregarded information about evolution patterns to detect future

user communities which otherwise could greatly improve the accuracy

of the community prediction task.

• In Granger regression, we used the pairwise bivariate Granger causal-

ity test in our influence identification step. However, while our em-

pirical experiments showed promising performance on this basis, some

researchers have also pointed out that causal influences might not be

highly accurate [70]. Conditional Granger causality has been proposed

to alleviate this problem [70].

• In Granger regression, the original formulation of Granger causality

is linear. However, extensions to nonlinear cases now exist. Ancona

et al. [4] propose to use a radial basis function to perform a global

nonlinear regression. Such extensions would potentially improve the

Granger regression performance and are worth further exploration in

future work.

• With respect to temporal latent space modeling, our method penalized

significant changes in positions of users’ latent representation in the

latent space, which may not be warranted in some circumstances like

bursty topics. Our work can be generalized to such cases based on

intuitions from Deng et al. [26].
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• Although our temporal latent space modeling used simple, yet effec-

tive approximations, the latent representations at time T+1 can be

formulated as yu(T+1) = f(yu1, .. yut, .. yuT) and more sophisticated

estimations such as the nonparametric method suggested by Sarkar et

al. [94] can be used in the future.
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